Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Chloroquin | Review

Liposomes for malaria management: the evolution from 1980 to 2020

Authors: Patrick B. Memvanga, Christian I. Nkanga

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980–2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Literature
1.
go back to reference WHO. World Malaria reports 2020–20 years of global progress and challenges. Geneva: World Health Organization; 2020. WHO. World Malaria reports 2020–20 years of global progress and challenges. Geneva: World Health Organization; 2020.
2.
go back to reference WHO. Guidelines for treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015. WHO. Guidelines for treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015.
3.
go back to reference Thriemer K, Van Hong N, Rosanas-Urgell A, Phuc BQ, Ha DM, Pockele E, et al. Delayed Parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in Central Vietnam. Antimicrob Agents Chemother. 2014;58:7049–55.PubMedPubMedCentralCrossRef Thriemer K, Van Hong N, Rosanas-Urgell A, Phuc BQ, Ha DM, Pockele E, et al. Delayed Parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in Central Vietnam. Antimicrob Agents Chemother. 2014;58:7049–55.PubMedPubMedCentralCrossRef
4.
go back to reference Breman JG. Resistance to artemisinin-based combination therapy. Lancet Infect Dis. 2012;12:820–2.PubMedCrossRef Breman JG. Resistance to artemisinin-based combination therapy. Lancet Infect Dis. 2012;12:820–2.PubMedCrossRef
5.
go back to reference Sowunmi A, Adewoye EO, Gbotsho GO, Happi CT, Sijuade A, Folarin OA, et al. Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children. Malar J. 2010;9:53.PubMedPubMedCentralCrossRef Sowunmi A, Adewoye EO, Gbotsho GO, Happi CT, Sijuade A, Folarin OA, et al. Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children. Malar J. 2010;9:53.PubMedPubMedCentralCrossRef
6.
go back to reference WHO. Status reports on artemisinin resistance and ACT efficacy. Geneva: World Health Organization; 2020. WHO. Status reports on artemisinin resistance and ACT efficacy. Geneva: World Health Organization; 2020.
7.
go back to reference Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. 2010;62:560–75.PubMedCrossRef Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. 2010;62:560–75.PubMedCrossRef
8.
go back to reference Borgheti-Cardoso LN, Anselmo MS, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S, et al. Promising nanomaterials in the fight against malaria. J Mater Chem B. 2020;8:9428–48.CrossRef Borgheti-Cardoso LN, Anselmo MS, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S, et al. Promising nanomaterials in the fight against malaria. J Mater Chem B. 2020;8:9428–48.CrossRef
9.
10.
go back to reference Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.PubMedCrossRef Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.PubMedCrossRef
11.
go back to reference Mac-Daniel L, Buckwalter MR, Berthet M, Virk Y, Yui K, Albert ML, et al. Local immune response to injection of Plasmodium sporozoites into the skin. J Immunol. 2014;193:1246–57.PubMedCrossRef Mac-Daniel L, Buckwalter MR, Berthet M, Virk Y, Yui K, Albert ML, et al. Local immune response to injection of Plasmodium sporozoites into the skin. J Immunol. 2014;193:1246–57.PubMedCrossRef
13.
go back to reference Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med. 2006;12:220–4.PubMedCrossRef Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med. 2006;12:220–4.PubMedCrossRef
14.
go back to reference Ménard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R. Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol. 2013;11:701–12.PubMedCrossRef Ménard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R. Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol. 2013;11:701–12.PubMedCrossRef
15.
go back to reference Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol. 2011;11:57–64.PubMedCrossRef Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol. 2011;11:57–64.PubMedCrossRef
16.
go back to reference Grüring C, Heiber A, Kruse F, Ungefehr J, Gilberger TW, Spielmann T. Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat Commun. 2011;2:165.PubMedCrossRef Grüring C, Heiber A, Kruse F, Ungefehr J, Gilberger TW, Spielmann T. Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat Commun. 2011;2:165.PubMedCrossRef
19.
go back to reference WHO. New opportunities to prevent P. vivax malaria relapses. WHO forcing a critical path to ensure access to and safe use of tafenoquine. Geneva: World Health Organization; 2019. p. 2019. WHO. New opportunities to prevent P. vivax malaria relapses. WHO forcing a critical path to ensure access to and safe use of tafenoquine. Geneva: World Health Organization; 2019. p. 2019.
20.
go back to reference Fujioka H, Aikawa M. Structure and life cycle. In: Perlmann P, Troye-Blomberg, Eds. Malaria parasites and disease. Basel: Karger. 2020;80:1–26. Fujioka H, Aikawa M. Structure and life cycle. In: Perlmann P, Troye-Blomberg, Eds. Malaria parasites and disease. Basel: Karger. 2020;80:1–26.
21.
go back to reference Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415:673–9.PubMedCrossRef Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415:673–9.PubMedCrossRef
23.
go back to reference Dondorp AM, Von Seidlein L. Malaria. In: Cohen J, Powderly WG, Opal SM, Eds. Infectious Diseases. 4th Edn. Elsevier; 2017. Dondorp AM, Von Seidlein L. Malaria. In: Cohen J, Powderly WG, Opal SM, Eds. Infectious Diseases. 4th Edn. Elsevier; 2017.
24.
go back to reference Tagami T, Yanai H, Terada Y, Ozeki T. Evaluation of phosphatidylserine-specific peptide-conjugated liposomes using a model system of malaria-infected erythrocytes. Biol Pharm Bull. 2015;38:1649–51.PubMedCrossRef Tagami T, Yanai H, Terada Y, Ozeki T. Evaluation of phosphatidylserine-specific peptide-conjugated liposomes using a model system of malaria-infected erythrocytes. Biol Pharm Bull. 2015;38:1649–51.PubMedCrossRef
25.
go back to reference White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383:723–35.PubMedCrossRef White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383:723–35.PubMedCrossRef
26.
go back to reference Rénia L, Howland SW, Claser C, Gruner AC, Suwanarusk R, Teo TH, et al. Cerebral malaria mysteries at the blood–brain barrier. Virulence. 2012;3:193–201.PubMedPubMedCentralCrossRef Rénia L, Howland SW, Claser C, Gruner AC, Suwanarusk R, Teo TH, et al. Cerebral malaria mysteries at the blood–brain barrier. Virulence. 2012;3:193–201.PubMedPubMedCentralCrossRef
27.
go back to reference WHO. Management of severe malaria. A practical handbook. 3rd Edn. Geneva: World Health Organization; 2013. WHO. Management of severe malaria. A practical handbook. 3rd Edn. Geneva: World Health Organization; 2013.
28.
go back to reference Newton CRJC, Krishna S. Severe falciparum malaria in children: Current understanding of pathophysiology and supportive treatment. Pharmacol Ther. 1998;79:1–53.PubMedCrossRef Newton CRJC, Krishna S. Severe falciparum malaria in children: Current understanding of pathophysiology and supportive treatment. Pharmacol Ther. 1998;79:1–53.PubMedCrossRef
29.
30.
go back to reference WHO. Malaria vaccine: WHO position paper–January 2016. WER. 2016;4: 33–52. WHO. Malaria vaccine: WHO position paper–January 2016. WER. 2016;4: 33–52.
31.
go back to reference Idro R, Marsh K, John CC, Newton CRJ. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res. 2010;68:267–74.PubMedPubMedCentralCrossRef Idro R, Marsh K, John CC, Newton CRJ. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res. 2010;68:267–74.PubMedPubMedCentralCrossRef
32.
go back to reference Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D. Tumor necrosis factor α in the pathogenesis of cerebral malaria. Cell Mol Life Sci C. 2003;60:1623–35.CrossRef Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D. Tumor necrosis factor α in the pathogenesis of cerebral malaria. Cell Mol Life Sci C. 2003;60:1623–35.CrossRef
34.
go back to reference Smith JD, Craig AG, Kriek N, Hudson-Taylor D, Kyes S, Fagen T, et al. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc Natl Acad Sci USA. 2000;97:1766–71.PubMedPubMedCentralCrossRef Smith JD, Craig AG, Kriek N, Hudson-Taylor D, Kyes S, Fagen T, et al. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc Natl Acad Sci USA. 2000;97:1766–71.PubMedPubMedCentralCrossRef
36.
go back to reference Choi L, Pryce J, Garner P. Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database Syst Rev. 2019;5:CD012688.PubMed Choi L, Pryce J, Garner P. Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database Syst Rev. 2019;5:CD012688.PubMed
37.
go back to reference WHO. Indoor residual spraying—an operational manual for indoor residual spraying (IRS) for malaria transmission control and elimination. 2nd Edn. Geneva: World Health Organization; 2015. WHO. Indoor residual spraying—an operational manual for indoor residual spraying (IRS) for malaria transmission control and elimination. 2nd Edn. Geneva: World Health Organization; 2015.
38.
go back to reference Okumu F, Moore S. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:208.PubMedPubMedCentralCrossRef Okumu F, Moore S. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:208.PubMedPubMedCentralCrossRef
40.
go back to reference Pryce J, Richardson M, Lengeler C. Insecticide-treated nets for preventing malaria. Cochrane Database Syst Rev. 2018;11:CD000363.PubMed Pryce J, Richardson M, Lengeler C. Insecticide-treated nets for preventing malaria. Cochrane Database Syst Rev. 2018;11:CD000363.PubMed
43.
go back to reference Ochomo E, Chahilu M, Cook J, Kinyari T, Bayoh NM, West P, et al. Insecticide-treated nets and protection against insecticide-resistant malaria vectors in Western Kenya. Emerg Infect Dis. 2017;23:758–64.PubMedPubMedCentralCrossRef Ochomo E, Chahilu M, Cook J, Kinyari T, Bayoh NM, West P, et al. Insecticide-treated nets and protection against insecticide-resistant malaria vectors in Western Kenya. Emerg Infect Dis. 2017;23:758–64.PubMedPubMedCentralCrossRef
44.
go back to reference Suresh M, Jeevanandam J, Chan YS, Danquah MK, Kalaiarasi JMV. Opportunities for metal oxide nanoparticles as a potential mosquitocide. Bionanoscience. 2020;10:292–310.CrossRef Suresh M, Jeevanandam J, Chan YS, Danquah MK, Kalaiarasi JMV. Opportunities for metal oxide nanoparticles as a potential mosquitocide. Bionanoscience. 2020;10:292–310.CrossRef
45.
go back to reference Benelli G, Caselli A, Canale A. Nanoparticles for mosquito control: challenges and constraints. J King Saud Univ Sci. 2017;29:424–35.CrossRef Benelli G, Caselli A, Canale A. Nanoparticles for mosquito control: challenges and constraints. J King Saud Univ Sci. 2017;29:424–35.CrossRef
46.
go back to reference Kiszewski AE. Blocking Plasmodium falciparum malaria transmission with drugs: The gametocytocidal and sporontocidal properties of current and prospective antimalarials. Pharmaceuticals. 2011;4:44–68.CrossRef Kiszewski AE. Blocking Plasmodium falciparum malaria transmission with drugs: The gametocytocidal and sporontocidal properties of current and prospective antimalarials. Pharmaceuticals. 2011;4:44–68.CrossRef
48.
go back to reference Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine NK, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144.PubMedPubMedCentralCrossRef Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine NK, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144.PubMedPubMedCentralCrossRef
49.
go back to reference Miller RS, Wongsrichanalai C, Buathong N, McDaniel P, Walsh DS, Knirsch C, et al. Effective treatment of uncomplicated Plasmodium falciparum malaria with azithromycin-quinine combinations: a randomized, dose-ranging study. Am J Trop Med Hyg. 2006;74:401–6.PubMedCrossRef Miller RS, Wongsrichanalai C, Buathong N, McDaniel P, Walsh DS, Knirsch C, et al. Effective treatment of uncomplicated Plasmodium falciparum malaria with azithromycin-quinine combinations: a randomized, dose-ranging study. Am J Trop Med Hyg. 2006;74:401–6.PubMedCrossRef
50.
go back to reference Pukrittayakamee S, Chotivanich K, Chantra A, Clemens R, Looareesuwan S, White NJ. Activities of artesunate and primaquine against asexual- and sexual-stage parasites in falciparum malaria. Antimicrob Agents Chemother. 2004;48:1329–34.PubMedPubMedCentralCrossRef Pukrittayakamee S, Chotivanich K, Chantra A, Clemens R, Looareesuwan S, White NJ. Activities of artesunate and primaquine against asexual- and sexual-stage parasites in falciparum malaria. Antimicrob Agents Chemother. 2004;48:1329–34.PubMedPubMedCentralCrossRef
51.
go back to reference WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010. WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010.
52.
go back to reference Sagara I, Beavogui AH, Zongo I, Soulama I, Borghini-Fuhrer I, Fofana B, et al. Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet. 2018;391:1378–90.CrossRef Sagara I, Beavogui AH, Zongo I, Soulama I, Borghini-Fuhrer I, Fofana B, et al. Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet. 2018;391:1378–90.CrossRef
53.
go back to reference Beavogui AH, Camara A, Delamou A, Diallo MS, Doumbouya A, Kourouma K, et al. Efficacy and safety of artesunate-amodiaquine and artemether-lumefantrine and prevalence of molecular markers associated with resistance, Guinea: an open-label two-arm randomised controlled trial. Malar J. 2020;19:223.PubMedPubMedCentralCrossRef Beavogui AH, Camara A, Delamou A, Diallo MS, Doumbouya A, Kourouma K, et al. Efficacy and safety of artesunate-amodiaquine and artemether-lumefantrine and prevalence of molecular markers associated with resistance, Guinea: an open-label two-arm randomised controlled trial. Malar J. 2020;19:223.PubMedPubMedCentralCrossRef
54.
go back to reference WHO. The use of artesunate-pyronaridine for the treatment of uncomplicated malaria. Geneva: World Health Organization; WHO/HTM/GMP/2019.3. WHO. The use of artesunate-pyronaridine for the treatment of uncomplicated malaria. Geneva: World Health Organization; WHO/HTM/GMP/2019.3.
55.
go back to reference Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:357–65.PubMedPubMedCentralCrossRef Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:357–65.PubMedPubMedCentralCrossRef
56.
go back to reference Shekalaghe S, Mosha D, Hamad A, Mbaga TA, Mihayo M, Bousema T, et al. Optimal timing of primaquine to reduce Plasmodium falciparum gametocyte carriage when co-administered with artemether-lumefantrine. Malar J. 2020;19:34.PubMedPubMedCentralCrossRef Shekalaghe S, Mosha D, Hamad A, Mbaga TA, Mihayo M, Bousema T, et al. Optimal timing of primaquine to reduce Plasmodium falciparum gametocyte carriage when co-administered with artemether-lumefantrine. Malar J. 2020;19:34.PubMedPubMedCentralCrossRef
57.
go back to reference Van der Pluijm RW, Tripura R, Hoglund RM, Phyo PA, Lek D, ul Islam A, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet. 2020;395:1345–60.PubMedPubMedCentralCrossRef Van der Pluijm RW, Tripura R, Hoglund RM, Phyo PA, Lek D, ul Islam A, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet. 2020;395:1345–60.PubMedPubMedCentralCrossRef
58.
go back to reference Rawe SL, McDonnell C. The cinchona alkaloids and the aminoquinolines. In: Patrick GL, Ed. Antimalarial agents: design and mechanism of action. Elsevier; 2020. Rawe SL, McDonnell C. The cinchona alkaloids and the aminoquinolines. In: Patrick GL, Ed. Antimalarial agents: design and mechanism of action. Elsevier; 2020.
60.
go back to reference Bouchaud O, Imbert P, Touze JE, Dodoo ANO, Danis M, Legros F. Fatal cardiotoxicity related to halofantrine: a review based on a worldwide safety data base. Malar J. 2009;8:289.PubMedPubMedCentralCrossRef Bouchaud O, Imbert P, Touze JE, Dodoo ANO, Danis M, Legros F. Fatal cardiotoxicity related to halofantrine: a review based on a worldwide safety data base. Malar J. 2009;8:289.PubMedPubMedCentralCrossRef
63.
go back to reference White NJ. Malaria. In: Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ, editors. Manson’s tropical infectious diseases. 23rd ed. London: Saunders; 2014. White NJ. Malaria. In: Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ, editors. Manson’s tropical infectious diseases. 23rd ed. London: Saunders; 2014.
64.
go back to reference Ochong EO, Van den Broek IVF, Keus K, Nzila A. Short Report: association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the Upper Nile in Southern Sudan. Am J Trop Med Hyg. 2003;69:184–7.PubMedCrossRef Ochong EO, Van den Broek IVF, Keus K, Nzila A. Short Report: association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the Upper Nile in Southern Sudan. Am J Trop Med Hyg. 2003;69:184–7.PubMedCrossRef
65.
go back to reference Pasay CJ, Rockett R, Sekuloski S, Griffin P, Marquart L, Peatey C, et al. Piperaquine monotherapy of drug-susceptible Plasmodium falciparum infection results in rapid clearance of parasitemia but is followed by the appearance of gametocytemia. J Infect Dis. 2016;214:105–13.PubMedPubMedCentralCrossRef Pasay CJ, Rockett R, Sekuloski S, Griffin P, Marquart L, Peatey C, et al. Piperaquine monotherapy of drug-susceptible Plasmodium falciparum infection results in rapid clearance of parasitemia but is followed by the appearance of gametocytemia. J Infect Dis. 2016;214:105–13.PubMedPubMedCentralCrossRef
66.
go back to reference Vale N, Moreira R, Gomes P. Primaquine revisited six decades after its discovery. Eur J Med Chem. 2009;44:937–53.PubMedCrossRef Vale N, Moreira R, Gomes P. Primaquine revisited six decades after its discovery. Eur J Med Chem. 2009;44:937–53.PubMedCrossRef
67.
go back to reference WHO. Testing for G6PD deficiency for safe use of primaquine in radical cure of P. vivax and P. ovale (policy brief). Geneva: World Health Organization; 2016. WHO. Testing for G6PD deficiency for safe use of primaquine in radical cure of P. vivax and P. ovale (policy brief). Geneva: World Health Organization; 2016.
68.
go back to reference Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Saunders DL, Mohammed R, et al. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380:215–28.PubMedPubMedCentralCrossRef Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Saunders DL, Mohammed R, et al. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380:215–28.PubMedPubMedCentralCrossRef
69.
go back to reference Llanos-Cuentas A, Lacerda MVG, Hien TT, Vélez ID, Namaik-larp C, Chu CS, et al. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380:229–41.PubMedPubMedCentralCrossRef Llanos-Cuentas A, Lacerda MVG, Hien TT, Vélez ID, Namaik-larp C, Chu CS, et al. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380:229–41.PubMedPubMedCentralCrossRef
70.
go back to reference Haston JC, Hwang J, Tan KR. Guidance for using tafenoquine for prevention and antirelapse therapy for malaria–United States, 2019. Morb Mortal Wkly Rep. 2019;68:1062–8.CrossRef Haston JC, Hwang J, Tan KR. Guidance for using tafenoquine for prevention and antirelapse therapy for malaria–United States, 2019. Morb Mortal Wkly Rep. 2019;68:1062–8.CrossRef
71.
go back to reference WHO. Updated WHO policy recommendation – Single dose primaquine as a gametocytocide in Plasmodium falciparum malaria. Geneva: World Health Organization; 2012. WHO. Updated WHO policy recommendation – Single dose primaquine as a gametocytocide in Plasmodium falciparum malaria. Geneva: World Health Organization; 2012.
72.
go back to reference Shapiro TA, Ranasinha CD, Kumar N, Barditch-Crovo P. Prophylactic activity of atovaquone against Plasmodium falciparum in humans. Am J Trop Med Hyg. 1999;60:831–6.PubMedCrossRef Shapiro TA, Ranasinha CD, Kumar N, Barditch-Crovo P. Prophylactic activity of atovaquone against Plasmodium falciparum in humans. Am J Trop Med Hyg. 1999;60:831–6.PubMedCrossRef
73.
go back to reference Boysen KE, Matuschewski K. Arrested oocyst maturation in Plasmodium parasites lacking Type II NADH: ubiquinone dehydrogenase. J Biol Chem. 2011;286:32661–71.PubMedPubMedCentralCrossRef Boysen KE, Matuschewski K. Arrested oocyst maturation in Plasmodium parasites lacking Type II NADH: ubiquinone dehydrogenase. J Biol Chem. 2011;286:32661–71.PubMedPubMedCentralCrossRef
74.
go back to reference Goodman CD, Siregar JE, Mollard V, Vega-Rodríguez J, Syafruddin D, Matsuoka H, et al. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. Science. 2016;352:349–53.PubMedPubMedCentralCrossRef Goodman CD, Siregar JE, Mollard V, Vega-Rodríguez J, Syafruddin D, Matsuoka H, et al. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. Science. 2016;352:349–53.PubMedPubMedCentralCrossRef
75.
go back to reference McKeage K, Scott LJ. Atovaquone/Proguanil: a review of its use for the prophylaxis of Plasmodium falciparum malaria. Drugs. 2003;63:597–623.PubMedCrossRef McKeage K, Scott LJ. Atovaquone/Proguanil: a review of its use for the prophylaxis of Plasmodium falciparum malaria. Drugs. 2003;63:597–623.PubMedCrossRef
76.
go back to reference WHO. Intermittent preventive treatment in pregnancy (IPTp). Geneva: World Health Organization; 2019. WHO. Intermittent preventive treatment in pregnancy (IPTp). Geneva: World Health Organization; 2019.
77.
go back to reference Peters PJ, Thigpen MC, Parise ME, Newman RD. Safety and toxicity of Sulfadoxine/pyrimethamine: implications for malaria prevention in pregnancy using intermittent preventive treatment. Drug Saf. 2007;30:481–501.PubMedCrossRef Peters PJ, Thigpen MC, Parise ME, Newman RD. Safety and toxicity of Sulfadoxine/pyrimethamine: implications for malaria prevention in pregnancy using intermittent preventive treatment. Drug Saf. 2007;30:481–501.PubMedCrossRef
78.
go back to reference Lovegrove FE, Kain KC. Malaria prevention. In: Jong EC, Sanford C, editors. The travel and tropical medicine manual. 4th ed. Edinburgh: Saunders, Elsevier; 2008. Lovegrove FE, Kain KC. Malaria prevention. In: Jong EC, Sanford C, editors. The travel and tropical medicine manual. 4th ed. Edinburgh: Saunders, Elsevier; 2008.
79.
go back to reference Dorsey G, Njama D, Kamya MR, Cattamanchi A, Kyabayinze D, Staedke SG, et al. Sulfadoxine/pyrimethamine alone or with amodiaquine or artesunate for treatment of uncomplicated malaria: a longitudinal randomised trial. Lancet. 2002;360:2031–8.PubMedCrossRef Dorsey G, Njama D, Kamya MR, Cattamanchi A, Kyabayinze D, Staedke SG, et al. Sulfadoxine/pyrimethamine alone or with amodiaquine or artesunate for treatment of uncomplicated malaria: a longitudinal randomised trial. Lancet. 2002;360:2031–8.PubMedCrossRef
80.
go back to reference Flannery EL, Chatterjee AK, Winzeler EA. Antimalarial drug discovery – Approaches and progress towards new medicines. Nat Rev Microbiol. 2013;11:849–62.PubMedPubMedCentralCrossRef Flannery EL, Chatterjee AK, Winzeler EA. Antimalarial drug discovery – Approaches and progress towards new medicines. Nat Rev Microbiol. 2013;11:849–62.PubMedPubMedCentralCrossRef
82.
go back to reference Memvanga PB, Coco R, Préat V. An oral malaria therapy: curcumin-loaded lipid-based drug delivery systems combined with β-arteether. J Control Release. 2013;172:904–13.PubMedCrossRef Memvanga PB, Coco R, Préat V. An oral malaria therapy: curcumin-loaded lipid-based drug delivery systems combined with β-arteether. J Control Release. 2013;172:904–13.PubMedCrossRef
83.
go back to reference Memvanga PB, Tona GL, Mesia GK, Lusakibanza MM, Cimanga RK. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: a review. J Ethnopharmacol. 2015;169:76–98.PubMedCrossRef Memvanga PB, Tona GL, Mesia GK, Lusakibanza MM, Cimanga RK. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: a review. J Ethnopharmacol. 2015;169:76–98.PubMedCrossRef
84.
go back to reference Wright CW, Phillipson JD, Awe SO, Kirby GC, Warhurst DC, Quetin-Leclercq J, et al. Antimalarial activity of cryptolepine and some other anhydronium bases. Phyther Res. 1996;10:361–3.CrossRef Wright CW, Phillipson JD, Awe SO, Kirby GC, Warhurst DC, Quetin-Leclercq J, et al. Antimalarial activity of cryptolepine and some other anhydronium bases. Phyther Res. 1996;10:361–3.CrossRef
85.
go back to reference Wright CW, Addae-Kyereme J, Breen AG, Brown JE, Cox MF, Croft SL, et al. Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J Med Chem. 2001;44:3187–94.PubMedCrossRef Wright CW, Addae-Kyereme J, Breen AG, Brown JE, Cox MF, Croft SL, et al. Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J Med Chem. 2001;44:3187–94.PubMedCrossRef
86.
go back to reference Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–4.PubMedCrossRef Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–4.PubMedCrossRef
87.
go back to reference Mimche PN, Taramelli D, Vivas L. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar J. 2011;10(Suppl. 1):S10.PubMedPubMedCentralCrossRef Mimche PN, Taramelli D, Vivas L. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar J. 2011;10(Suppl. 1):S10.PubMedPubMedCentralCrossRef
88.
go back to reference Manohar S, Khan SI, Kandi SK, Raj K, Sun G, Yang X, et al. Synthesis, Antimalarial activity and cytotoxic potential of new monocarbonyl analogues of curcumin. Bioorg Med Chem Lett. 2013;23:112–6.PubMedCrossRef Manohar S, Khan SI, Kandi SK, Raj K, Sun G, Yang X, et al. Synthesis, Antimalarial activity and cytotoxic potential of new monocarbonyl analogues of curcumin. Bioorg Med Chem Lett. 2013;23:112–6.PubMedCrossRef
89.
go back to reference Mombo-Ngoma G, Remppis J, Sievers M, Manego RZ, Endamne L, Kabwende L, et al. Efficacy and safety of fosmidomycin-piperaquine as nonartemisinin-based combination therapy for uncomplicated falciparum malaria: a single-arm, age de-escalation proof-of-concept study in Gabon. Clin Infect Dis. 2018;66:1823–30.PubMedCrossRef Mombo-Ngoma G, Remppis J, Sievers M, Manego RZ, Endamne L, Kabwende L, et al. Efficacy and safety of fosmidomycin-piperaquine as nonartemisinin-based combination therapy for uncomplicated falciparum malaria: a single-arm, age de-escalation proof-of-concept study in Gabon. Clin Infect Dis. 2018;66:1823–30.PubMedCrossRef
90.
go back to reference Fernandes JF, Lell B, Agnandji ST, Obiang RM, Bassat Q, Kremsner PG, et al. Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials. Future Microbiol. 2015;10:1375–90.PubMedCrossRef Fernandes JF, Lell B, Agnandji ST, Obiang RM, Bassat Q, Kremsner PG, et al. Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials. Future Microbiol. 2015;10:1375–90.PubMedCrossRef
91.
go back to reference Borrmann S, Lundgren I, Oyakhirome S, Impouma B, Matsiegui PB, Adegnika AA, et al. Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob Agents Chemother. 2006;50:2713–8.PubMedPubMedCentralCrossRef Borrmann S, Lundgren I, Oyakhirome S, Impouma B, Matsiegui PB, Adegnika AA, et al. Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob Agents Chemother. 2006;50:2713–8.PubMedPubMedCentralCrossRef
92.
go back to reference Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann H-D, Chan H-W, et al. Artemisone - a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed Engl. 2006;45:2082–8.PubMedCrossRef Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann H-D, Chan H-W, et al. Artemisone - a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed Engl. 2006;45:2082–8.PubMedCrossRef
93.
go back to reference Coertzen D, Reader J, Van Der Watt M, Nondaba SH, Gibhard L, Wiesner L, et al. Artemisone and artemiside are potent panreactive antimalarial agents that also synergize redox imbalance in Plasmodium falciparum transmissible gametocyte stages. Antimicrob Agents Chemother. 2018;62:e02214-e2217.PubMedPubMedCentralCrossRef Coertzen D, Reader J, Van Der Watt M, Nondaba SH, Gibhard L, Wiesner L, et al. Artemisone and artemiside are potent panreactive antimalarial agents that also synergize redox imbalance in Plasmodium falciparum transmissible gametocyte stages. Antimicrob Agents Chemother. 2018;62:e02214-e2217.PubMedPubMedCentralCrossRef
94.
go back to reference Bégué J, Bonnet-Delpon D. Biological impacts of fluorination: pharmaceuticals based on natural products. In: Tressaud A, Haufe G, editors. Fluorine and Health/ Molecular Imaging, Biomedical Materials and Pharmaceuticals. Amsterdam: Elsevier; 2008. Bégué J, Bonnet-Delpon D. Biological impacts of fluorination: pharmaceuticals based on natural products. In: Tressaud A, Haufe G, editors. Fluorine and Health/ Molecular Imaging, Biomedical Materials and Pharmaceuticals. Amsterdam: Elsevier; 2008.
95.
go back to reference Chaturvedi D. Sesquiterpene lactones: a versatile class of structurally diverse natural products and their semisynthetic analogs as potential antimalarials. In: Brahmachari G, editor. Discovery and development of therapeutics from natural products against neglected tropical tiseases. Natural Product Drug Discovery. Santiniketan: Elsevier; 2019. p. 2019. Chaturvedi D. Sesquiterpene lactones: a versatile class of structurally diverse natural products and their semisynthetic analogs as potential antimalarials. In: Brahmachari G, editor. Discovery and development of therapeutics from natural products against neglected tropical tiseases. Natural Product Drug Discovery. Santiniketan: Elsevier; 2019. p. 2019.
96.
go back to reference Tasdemir D, Topaloglu B, Perozzo R, Brun R, O’Neill R, Carballeira NM, et al. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorganic Med Chem. 2007;15:6834–45.CrossRef Tasdemir D, Topaloglu B, Perozzo R, Brun R, O’Neill R, Carballeira NM, et al. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorganic Med Chem. 2007;15:6834–45.CrossRef
97.
go back to reference Tasdemir D, Sanabria D, Lauinger IL, Tarun A, Herman R, Perozzo R, et al. 2-Hexadecynoic acid inhibits plasmodial FAS-II enzymes and arrests erythrocytic and liver stage Plasmodium infections. Bioorganic Med Chem. 2010;18:7475–85.CrossRef Tasdemir D, Sanabria D, Lauinger IL, Tarun A, Herman R, Perozzo R, et al. 2-Hexadecynoic acid inhibits plasmodial FAS-II enzymes and arrests erythrocytic and liver stage Plasmodium infections. Bioorganic Med Chem. 2010;18:7475–85.CrossRef
98.
go back to reference Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.PubMedPubMedCentralCrossRef Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.PubMedPubMedCentralCrossRef
99.
go back to reference Nkanga IC, Bapolisi MA, Okafor IN, Krause WMR. General perception of liposomes: formation, manufacturing and applications. In: Catala A, Ed. Liposomes–Advances and perspectives. IntechOpen. 2019;32:137–44. Nkanga IC, Bapolisi MA, Okafor IN, Krause WMR. General perception of liposomes: formation, manufacturing and applications. In: Catala A, Ed. Liposomes–Advances and perspectives. IntechOpen. 2019;32:137–44.
100.
go back to reference Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol. 2012;1:147–68.CrossRef Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol. 2012;1:147–68.CrossRef
101.
go back to reference Pandey H, Rani R, Agarwal V. Liposome and their applications in cancer therapy. Braz Arch Biol Technol. 2016;59:e16150477.CrossRef Pandey H, Rani R, Agarwal V. Liposome and their applications in cancer therapy. Braz Arch Biol Technol. 2016;59:e16150477.CrossRef
102.
go back to reference Szoka F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508.PubMedCrossRef Szoka F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508.PubMedCrossRef
103.
go back to reference Gregoriadis G. Targeting of drugs with molecules, cells and liposomes. Trends Pharmacol Sci. 1983;4:304–7.CrossRef Gregoriadis G. Targeting of drugs with molecules, cells and liposomes. Trends Pharmacol Sci. 1983;4:304–7.CrossRef
104.
go back to reference Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv. 2011;2011:1–9.CrossRef Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv. 2011;2011:1–9.CrossRef
105.
go back to reference Samuelsson E, Shen H, Blanco E, Ferrari M, Wolfram J. Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surfaces B Biointerfaces. 2017;158:356–62.PubMedCrossRef Samuelsson E, Shen H, Blanco E, Ferrari M, Wolfram J. Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surfaces B Biointerfaces. 2017;158:356–62.PubMedCrossRef
106.
107.
go back to reference Agrawal AK, Gupta CM. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv Drug Deliv Rev. 2000;41:135–46.PubMedCrossRef Agrawal AK, Gupta CM. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv Drug Deliv Rev. 2000;41:135–46.PubMedCrossRef
108.
go back to reference Stensrud G, Sande SA, Kristensen S, Smistad G. Formulation and characterisation of primaquine loaded liposomes prepared by a pH gradient using experimental design. Int J Pharm. 2000;198:213–28.PubMedCrossRef Stensrud G, Sande SA, Kristensen S, Smistad G. Formulation and characterisation of primaquine loaded liposomes prepared by a pH gradient using experimental design. Int J Pharm. 2000;198:213–28.PubMedCrossRef
109.
110.
go back to reference Smith JE, Pirson P, Sinden RE. Studies on the kinetics of uptake and distribution of free and liposome-entrapped primaquine, and of sporozoites by isolated perfused rat liver. Ann Trop Med Parasitol. 1983;77:379–86.PubMedCrossRef Smith JE, Pirson P, Sinden RE. Studies on the kinetics of uptake and distribution of free and liposome-entrapped primaquine, and of sporozoites by isolated perfused rat liver. Ann Trop Med Parasitol. 1983;77:379–86.PubMedCrossRef
111.
112.
go back to reference Gregoriadis G, Ryman BE. Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. Eur J Biochem. 1972;24:485–91.PubMedCrossRef Gregoriadis G, Ryman BE. Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. Eur J Biochem. 1972;24:485–91.PubMedCrossRef
113.
go back to reference Pirson P, Steiger RF, Trouet A, Gillet J, Herman F. Liposomes in the chemotherapy of experimental murine malaria. Trans R Soc Trop Med Hyg. 1979;73:347.PubMedCrossRef Pirson P, Steiger RF, Trouet A, Gillet J, Herman F. Liposomes in the chemotherapy of experimental murine malaria. Trans R Soc Trop Med Hyg. 1979;73:347.PubMedCrossRef
114.
go back to reference Pirson P, Steiger RF, Trouet A, Gillet J, Herman F. Primaquine liposomes in the chemotherapy of experimental murine malaria. Ann Trop Med Parasitol. 1980;74:383–91.PubMedCrossRef Pirson P, Steiger RF, Trouet A, Gillet J, Herman F. Primaquine liposomes in the chemotherapy of experimental murine malaria. Ann Trop Med Parasitol. 1980;74:383–91.PubMedCrossRef
115.
go back to reference Trouet A, Pirson P, Steiger R, Masquelier M, Baurain R, Gillet J. Development of new derivatives of primaquine by association with lysosomotropic carriers. Bull World Health Organ. 1981;59:449–58.PubMedPubMedCentral Trouet A, Pirson P, Steiger R, Masquelier M, Baurain R, Gillet J. Development of new derivatives of primaquine by association with lysosomotropic carriers. Bull World Health Organ. 1981;59:449–58.PubMedPubMedCentral
116.
go back to reference Pirson P, Steiger R, Trouet A. The disposition of free and liposomally encapsulated antimalarial primaquine in mice. Biochem Pharmacol. 1982;31:3501–7.PubMedCrossRef Pirson P, Steiger R, Trouet A. The disposition of free and liposomally encapsulated antimalarial primaquine in mice. Biochem Pharmacol. 1982;31:3501–7.PubMedCrossRef
117.
go back to reference Peeters PA, Huiskamp CW, Eling WM, Crommelin DJ. Chloroquine containing liposomes in the chemotherapy of murine malaria. Parasitology. 1989;98:381–6.PubMedCrossRef Peeters PA, Huiskamp CW, Eling WM, Crommelin DJ. Chloroquine containing liposomes in the chemotherapy of murine malaria. Parasitology. 1989;98:381–6.PubMedCrossRef
118.
go back to reference Peeters PAM, De Leest K, Eling WMC, Crommelin DJA. Chloroquine blood levels after administration of the liposome-encapsulated drug in relation to therapy of murine malaria. Pharm Res. 1989;6:787–93.PubMedCrossRef Peeters PAM, De Leest K, Eling WMC, Crommelin DJA. Chloroquine blood levels after administration of the liposome-encapsulated drug in relation to therapy of murine malaria. Pharm Res. 1989;6:787–93.PubMedCrossRef
119.
go back to reference Crommelin DJA, Nässander UK, Peeters PAM, Steerenberg PA, De Jong WH, Eling WMC, et al. Drug-laden liposomes in antitumor therapy and in the treatment of parasitic diseases. J Control Release. 1990;11:233–43.CrossRef Crommelin DJA, Nässander UK, Peeters PAM, Steerenberg PA, De Jong WH, Eling WMC, et al. Drug-laden liposomes in antitumor therapy and in the treatment of parasitic diseases. J Control Release. 1990;11:233–43.CrossRef
120.
go back to reference Crommelin DJA, Eling WMC, Steerenberg PA, Nässander UK, Storm G, De Jong WH, et al. Liposomes and immunoliposomes for controlled release or site specific delivery of anti-parasitic drugs and cytostatics. J Control Release. 1991;16:147–54.CrossRef Crommelin DJA, Eling WMC, Steerenberg PA, Nässander UK, Storm G, De Jong WH, et al. Liposomes and immunoliposomes for controlled release or site specific delivery of anti-parasitic drugs and cytostatics. J Control Release. 1991;16:147–54.CrossRef
121.
go back to reference Arica B, Ozer AY, Ercan MT, Hincal AA. Characterization, in vitro and in vivo studies on primaquine diphosphate liposomes. J Microencapsul. 1995;12:469–85.PubMedCrossRef Arica B, Ozer AY, Ercan MT, Hincal AA. Characterization, in vitro and in vivo studies on primaquine diphosphate liposomes. J Microencapsul. 1995;12:469–85.PubMedCrossRef
122.
go back to reference Al-Angary AA, Al-Meshal MA, Bayomi MA, Khidr SH. Evaluation of liposomal formulations containing the antimalarial agent, arteether. Int J Pharm. 1996;128:163–8.CrossRef Al-Angary AA, Al-Meshal MA, Bayomi MA, Khidr SH. Evaluation of liposomal formulations containing the antimalarial agent, arteether. Int J Pharm. 1996;128:163–8.CrossRef
123.
go back to reference Bayomi MA, Al-Angary AA, Al-Meshal MA, Al-Dardiri MM. In vivo evaluation of arteether liposomes. Int J Pharm. 1998;175:1–7.CrossRef Bayomi MA, Al-Angary AA, Al-Meshal MA, Al-Dardiri MM. In vivo evaluation of arteether liposomes. Int J Pharm. 1998;175:1–7.CrossRef
124.
go back to reference Postma NS, Hermsen CC, Zuidema J, Eling WMC. Plasmodium vinckei: optimization of desferrioxamine B delivery in the treatment of murine malaria. Exp Parasitol. 1998;89:323–30.PubMedCrossRef Postma NS, Hermsen CC, Zuidema J, Eling WMC. Plasmodium vinckei: optimization of desferrioxamine B delivery in the treatment of murine malaria. Exp Parasitol. 1998;89:323–30.PubMedCrossRef
125.
go back to reference Chimanuka B, Gabriëls M, Detaevernier M-R, Plaizier-Vercammen JA. Preparation of β-artemether liposomes, their HPLC–UV evaluation and relevance for clearing recrudescent parasitaemia in Plasmodium chabaudi malaria-infected mice. J Pharm Biomed Anal. 2002;28:13–22.PubMedCrossRef Chimanuka B, Gabriëls M, Detaevernier M-R, Plaizier-Vercammen JA. Preparation of β-artemether liposomes, their HPLC–UV evaluation and relevance for clearing recrudescent parasitaemia in Plasmodium chabaudi malaria-infected mice. J Pharm Biomed Anal. 2002;28:13–22.PubMedCrossRef
126.
go back to reference Gabriëls M, Plaizier-Vercammen J. Physical and chemical evaluation of liposomes, containing artesunate. J Pharm Biomed Anal. 2003;31:655–67.PubMedCrossRef Gabriëls M, Plaizier-Vercammen J. Physical and chemical evaluation of liposomes, containing artesunate. J Pharm Biomed Anal. 2003;31:655–67.PubMedCrossRef
127.
go back to reference Qiu L, Jing N, Jin Y. Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm. 2008;361:56–63.PubMedCrossRef Qiu L, Jing N, Jin Y. Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm. 2008;361:56–63.PubMedCrossRef
128.
go back to reference Isacchi B, Arrigucci S, Marca GL, Bergonzi MC, Vannucchi MG, Novelli A, et al. Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J Liposome Res. 2011;21:237–44.PubMedCrossRef Isacchi B, Arrigucci S, Marca GL, Bergonzi MC, Vannucchi MG, Novelli A, et al. Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J Liposome Res. 2011;21:237–44.PubMedCrossRef
129.
go back to reference Isacchi B, Bergonzi MC, Grazioso M, Righeschi C, Pietretti A, Severini C, et al. Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur J Pharm Biopharm. 2012;80:528–34.PubMedCrossRef Isacchi B, Bergonzi MC, Grazioso M, Righeschi C, Pietretti A, Severini C, et al. Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur J Pharm Biopharm. 2012;80:528–34.PubMedCrossRef
130.
go back to reference Hasan GM, Garg N, Dogra E, Surolia R, Ghosh PC. Inhibition of the growth of Plasmodium falciparum in culture by stearylamine-phosphatidylcholine liposomes. J Parasitol Res. 2011;2011:120462.PubMedPubMedCentralCrossRef Hasan GM, Garg N, Dogra E, Surolia R, Ghosh PC. Inhibition of the growth of Plasmodium falciparum in culture by stearylamine-phosphatidylcholine liposomes. J Parasitol Res. 2011;2011:120462.PubMedPubMedCentralCrossRef
131.
go back to reference Aditya NP, Chimote G, Gunalan K, Banerjee R, Patankar S, Madhusudhan B. Experimental parasitology curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol. 2012;131:292–9.CrossRefPubMed Aditya NP, Chimote G, Gunalan K, Banerjee R, Patankar S, Madhusudhan B. Experimental parasitology curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol. 2012;131:292–9.CrossRefPubMed
132.
go back to reference Waknine-Grinberg JH, Even-Chen S, Avichzer J, Turjeman K, Bentura-Marciano A, Haynes RK, et al. Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute symptoms of experimental cerebral malaria. PLoS ONE. 2013;8:e72722.PubMedPubMedCentralCrossRef Waknine-Grinberg JH, Even-Chen S, Avichzer J, Turjeman K, Bentura-Marciano A, Haynes RK, et al. Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute symptoms of experimental cerebral malaria. PLoS ONE. 2013;8:e72722.PubMedPubMedCentralCrossRef
133.
go back to reference Guo J, Waknine-Grinberg JH, Mitchell AJ, Barenholz Y, Golenser J. Reduction of experimental cerebral malaria and its related proinflammatory responses by the novel liposome-based β-methasone nanodrug. BioMed Res Int. 2014;2014:292471.PubMedPubMedCentralCrossRef Guo J, Waknine-Grinberg JH, Mitchell AJ, Barenholz Y, Golenser J. Reduction of experimental cerebral malaria and its related proinflammatory responses by the novel liposome-based β-methasone nanodrug. BioMed Res Int. 2014;2014:292471.PubMedPubMedCentralCrossRef
134.
go back to reference Rajendran V, Rohra S, Raza M, Hasan GM, Dutt S, Ghosh PC. Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob Agents Chemother. 2015;60:1304–18.PubMedCrossRef Rajendran V, Rohra S, Raza M, Hasan GM, Dutt S, Ghosh PC. Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob Agents Chemother. 2015;60:1304–18.PubMedCrossRef
135.
go back to reference Rajendran V, Singh C, Ghosh PC. Improved efficacy of doxycycline in liposomes against Plasmodium falciparum in culture and Plasmodium berghei infection in mice. Can J Physiol Pharmacol. 2018;96:1145–52.PubMedCrossRef Rajendran V, Singh C, Ghosh PC. Improved efficacy of doxycycline in liposomes against Plasmodium falciparum in culture and Plasmodium berghei infection in mice. Can J Physiol Pharmacol. 2018;96:1145–52.PubMedCrossRef
136.
go back to reference Portnoy E, Vakruk N, Bishara A, Shmuel M, Magdassi S, Golenser J, et al. Indocyanine green liposomes for diagnosis and therapeutic monitoring of cerebral malaria. Theranostics. 2016;6:167–76.PubMedPubMedCentralCrossRef Portnoy E, Vakruk N, Bishara A, Shmuel M, Magdassi S, Golenser J, et al. Indocyanine green liposomes for diagnosis and therapeutic monitoring of cerebral malaria. Theranostics. 2016;6:167–76.PubMedPubMedCentralCrossRef
137.
go back to reference Ibrahim S, Tagami T, Ozeki T. Effective-loading of platinum-chloroquine into PEGylated neutral and cationic liposomes as a drug delivery system for resistant malaria parasites. Biol Pharm Bull. 2017;40:815–23.PubMedCrossRef Ibrahim S, Tagami T, Ozeki T. Effective-loading of platinum-chloroquine into PEGylated neutral and cationic liposomes as a drug delivery system for resistant malaria parasites. Biol Pharm Bull. 2017;40:815–23.PubMedCrossRef
138.
go back to reference Raza M, Bharti H, Singal A, Nag A, Ghosh PC. Long circulatory liposomal maduramicin inhibits the growth of Plasmodium falciparum blood stages in culture and cures murine models of experimental malaria. Nanoscale. 2018;10:13773–91.PubMedCrossRef Raza M, Bharti H, Singal A, Nag A, Ghosh PC. Long circulatory liposomal maduramicin inhibits the growth of Plasmodium falciparum blood stages in culture and cures murine models of experimental malaria. Nanoscale. 2018;10:13773–91.PubMedCrossRef
139.
go back to reference Miatmoko A, Salim RH, Zahro SM, Annuryanti F, Sari R, Hendradi E. Dual loading of primaquine and chloroquine into liposome. Eur Pharm J. 2020;66:18–25.CrossRef Miatmoko A, Salim RH, Zahro SM, Annuryanti F, Sari R, Hendradi E. Dual loading of primaquine and chloroquine into liposome. Eur Pharm J. 2020;66:18–25.CrossRef
140.
go back to reference Owais M, Varshney GC, Choudhury A, Chandra S, Gupta CM. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice. Antimicrob Agents Chemother. 1995;39:180–4.PubMedPubMedCentralCrossRef Owais M, Varshney GC, Choudhury A, Chandra S, Gupta CM. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice. Antimicrob Agents Chemother. 1995;39:180–4.PubMedPubMedCentralCrossRef
141.
go back to reference Madden TD, Harrigan PR, Tai LCL, Bally MB, Mayer LD, Redelmeier TE, et al. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids. 1990;53:37–46.PubMedCrossRef Madden TD, Harrigan PR, Tai LCL, Bally MB, Mayer LD, Redelmeier TE, et al. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids. 1990;53:37–46.PubMedCrossRef
142.
go back to reference Moles E, Kavallaris M, Fernàndez-Busquets X. Modeling the distribution of diprotic basic drugs in liposomal systems: perspectives on malaria nanotherapy. Front Pharmacol. 2019;10:1064.PubMedPubMedCentralCrossRef Moles E, Kavallaris M, Fernàndez-Busquets X. Modeling the distribution of diprotic basic drugs in liposomal systems: perspectives on malaria nanotherapy. Front Pharmacol. 2019;10:1064.PubMedPubMedCentralCrossRef
143.
go back to reference Ismail M, Ling L, Du Y, Yao C, Li X. Liposomes of dimeric artesunate phospholipid: a combination of dimerization and self-assembly to combat malaria. Biomaterials. 2018;163:76–87.PubMedCrossRef Ismail M, Ling L, Du Y, Yao C, Li X. Liposomes of dimeric artesunate phospholipid: a combination of dimerization and self-assembly to combat malaria. Biomaterials. 2018;163:76–87.PubMedCrossRef
144.
go back to reference Mohanty S, Patel DK, Pati SS, Mishra SK. Adjuvant therapy in cerebral malaria. Indian J Med Res. 2006;124:245–60.PubMed Mohanty S, Patel DK, Pati SS, Mishra SK. Adjuvant therapy in cerebral malaria. Indian J Med Res. 2006;124:245–60.PubMed
145.
go back to reference Traore O, Carnevale P, Kaptue-Noche L, M’Bede J, Desfontaine M, Elion J, et al. Preliminary report on the use of desferrioxamine in the treatment of Plasmodium falciparum malaria. Am J Hematol. 1991;37:206–8.PubMedCrossRef Traore O, Carnevale P, Kaptue-Noche L, M’Bede J, Desfontaine M, Elion J, et al. Preliminary report on the use of desferrioxamine in the treatment of Plasmodium falciparum malaria. Am J Hematol. 1991;37:206–8.PubMedCrossRef
146.
go back to reference Gordeuk V, Thuma P, Brittenham G, McLaren C, Parry D, Backenstose A, et al. Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Engl J Med. 1992;327:1473–7.PubMedCrossRef Gordeuk V, Thuma P, Brittenham G, McLaren C, Parry D, Backenstose A, et al. Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Engl J Med. 1992;327:1473–7.PubMedCrossRef
147.
go back to reference Mabeza GF, Biemba G, Gordeuk VR. Clinical studies of iron chelators in malaria. Acta Haematol. 1996;95:78–86.PubMedCrossRef Mabeza GF, Biemba G, Gordeuk VR. Clinical studies of iron chelators in malaria. Acta Haematol. 1996;95:78–86.PubMedCrossRef
148.
go back to reference Cabantchik ZI, Glickstein H, Golenser J, Loyevsky M, Tsafack A. Iron chelators: mode of action as antimalarials. Acta Haematol. 1996;95:70–7.PubMedCrossRef Cabantchik ZI, Glickstein H, Golenser J, Loyevsky M, Tsafack A. Iron chelators: mode of action as antimalarials. Acta Haematol. 1996;95:70–7.PubMedCrossRef
149.
go back to reference Keberle H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann N Y Acad Sci. 1964;119:758–68.PubMedCrossRef Keberle H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann N Y Acad Sci. 1964;119:758–68.PubMedCrossRef
150.
go back to reference Sun W, Tanaka TQ, Magle CT, Huang W, Southall N, Huang R, et al. Chemical signatures and new drug targets for gametocytocidal drug development. Sci Rep. 2014;4:3743.PubMedPubMedCentralCrossRef Sun W, Tanaka TQ, Magle CT, Huang W, Southall N, Huang R, et al. Chemical signatures and new drug targets for gametocytocidal drug development. Sci Rep. 2014;4:3743.PubMedPubMedCentralCrossRef
151.
go back to reference Maron MI, Magle CT, Czesny B, Turturice BA, Huang R, Zheng W, et al. Maduramicin rapidly eliminates malaria parasites and potentiates the gametocytocidal activity of the pyrazoleamide PA21A050. Antimicrob Agents Chemother. 2016;60:1492–9.PubMedCentralCrossRef Maron MI, Magle CT, Czesny B, Turturice BA, Huang R, Zheng W, et al. Maduramicin rapidly eliminates malaria parasites and potentiates the gametocytocidal activity of the pyrazoleamide PA21A050. Antimicrob Agents Chemother. 2016;60:1492–9.PubMedCentralCrossRef
152.
go back to reference Chen X, Chen L, Jiang S, Huang S. Maduramicin induces apoptosis and necrosis, and blocks autophagic flux in myocardial H9c2 cells. J Appl Toxicol. 2018;38:366–75.PubMedCrossRef Chen X, Chen L, Jiang S, Huang S. Maduramicin induces apoptosis and necrosis, and blocks autophagic flux in myocardial H9c2 cells. J Appl Toxicol. 2018;38:366–75.PubMedCrossRef
153.
go back to reference Li LH, Hui SW. The effect of lipid molecular packing stress on cationic liposome-induced rabbit erythrocyte fusion. Biochim Biophys Acta - Biomembr. 1997;1323:105–16.CrossRef Li LH, Hui SW. The effect of lipid molecular packing stress on cationic liposome-induced rabbit erythrocyte fusion. Biochim Biophys Acta - Biomembr. 1997;1323:105–16.CrossRef
154.
go back to reference Stebelska K, Wyrozumska P, Sikorski AF. PS Exposure increases the susceptibility of cells to fusion with DOTAP liposomes. Chem Biol Interact. 2006;160:165–74.PubMedCrossRef Stebelska K, Wyrozumska P, Sikorski AF. PS Exposure increases the susceptibility of cells to fusion with DOTAP liposomes. Chem Biol Interact. 2006;160:165–74.PubMedCrossRef
155.
go back to reference Obata Y, Tajima S, Takeoka S. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release. 2010;142:267–76.PubMedCrossRef Obata Y, Tajima S, Takeoka S. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release. 2010;142:267–76.PubMedCrossRef
156.
go back to reference Gonzalez-Ceron L, Rodriguez MH, Sandoval MA, Santillan F, Virgen SG, Betanzos AF, et al. Effectiveness of combined chloroquine and primaquine treatment in 14 days versus intermittent single dose regimen, in an open, non-randomized, clinical trial, to eliminate Plasmodium vivax in Southern Mexico. Malar J. 2015;14:426.PubMedPubMedCentralCrossRef Gonzalez-Ceron L, Rodriguez MH, Sandoval MA, Santillan F, Virgen SG, Betanzos AF, et al. Effectiveness of combined chloroquine and primaquine treatment in 14 days versus intermittent single dose regimen, in an open, non-randomized, clinical trial, to eliminate Plasmodium vivax in Southern Mexico. Malar J. 2015;14:426.PubMedPubMedCentralCrossRef
157.
go back to reference Postma NS, Hermsen RC, Crommelin DJA, Eling WMC, Zuidema J. Thiolated recombinant human tumor necrosis factor-alpha protects against Plasmodium berghei K173-induced experimental cerebral malaria in mice. Antimicrob Agents Chemother. 1999;43:1027–33.PubMedPubMedCentralCrossRef Postma NS, Hermsen RC, Crommelin DJA, Eling WMC, Zuidema J. Thiolated recombinant human tumor necrosis factor-alpha protects against Plasmodium berghei K173-induced experimental cerebral malaria in mice. Antimicrob Agents Chemother. 1999;43:1027–33.PubMedPubMedCentralCrossRef
158.
go back to reference Postma NS, Crommelin DJ, Eling WM, Zuidema J. Treatment with liposome-bound recombinant human tumor necrosis factor-alpha suppresses parasitemia and protects against Plasmodium berghei K173-induced experimental cerebral malaria in mice. J Pharmacol Exp Ther. 1999;288:114–20.PubMed Postma NS, Crommelin DJ, Eling WM, Zuidema J. Treatment with liposome-bound recombinant human tumor necrosis factor-alpha suppresses parasitemia and protects against Plasmodium berghei K173-induced experimental cerebral malaria in mice. J Pharmacol Exp Ther. 1999;288:114–20.PubMed
159.
go back to reference Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44:61–98.PubMedCrossRef Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44:61–98.PubMedCrossRef
160.
go back to reference Prasad K, Garner P. Steroids for treating cerebral malaria. Cochrane Database Syst Rev. 2000;1999:CD000972. Prasad K, Garner P. Steroids for treating cerebral malaria. Cochrane Database Syst Rev. 2000;1999:CD000972.
161.
go back to reference Enwere G. A review of the quality of randomized clinical trials of adjunctive therapy for the treatment of cerebral malaria. Trop Med Int Health. 2005;10:1171–5.PubMedCrossRef Enwere G. A review of the quality of randomized clinical trials of adjunctive therapy for the treatment of cerebral malaria. Trop Med Int Health. 2005;10:1171–5.PubMedCrossRef
162.
go back to reference Zucker D, Barenholz Y. Optimization of vincristine-topotecan combination - paving the way for improved chemotherapy regimens by nanoliposomes. J Control Release. 2010;146:326–33.PubMedCrossRef Zucker D, Barenholz Y. Optimization of vincristine-topotecan combination - paving the way for improved chemotherapy regimens by nanoliposomes. J Control Release. 2010;146:326–33.PubMedCrossRef
163.
go back to reference Alving CR, Schneider I, Swartz GM, Steck EA. Sporozoite-induced malaria: therapeutic effects of glycolipids in liposomes. Science. 1979;205:1142–4.PubMedCrossRef Alving CR, Schneider I, Swartz GM, Steck EA. Sporozoite-induced malaria: therapeutic effects of glycolipids in liposomes. Science. 1979;205:1142–4.PubMedCrossRef
164.
go back to reference Alving CR. Therapeutic potential of liposomes as carriers in leishmaniasis, malaria, and vaccines. In: Gregoriadis G, Senior J, Trouet A, editors. Targeting of Drugs. New York: Plenum Press; 1982. Alving CR. Therapeutic potential of liposomes as carriers in leishmaniasis, malaria, and vaccines. In: Gregoriadis G, Senior J, Trouet A, editors. Targeting of Drugs. New York: Plenum Press; 1982.
165.
go back to reference Singhal A, Gupta CM. Antibody-mediated targeting of liposomes to red cells in vivo. FEBS Lett. 1986;201:321–6.PubMedCrossRef Singhal A, Gupta CM. Antibody-mediated targeting of liposomes to red cells in vivo. FEBS Lett. 1986;201:321–6.PubMedCrossRef
166.
go back to reference Gupta CM, Puri A, Jain RK, Bali A, Anand N. Protection of mice against Plasmodium berghei infection by a Tuftsin derivative. FEBS Lett. 1986;205:351–4.PubMedCrossRef Gupta CM, Puri A, Jain RK, Bali A, Anand N. Protection of mice against Plasmodium berghei infection by a Tuftsin derivative. FEBS Lett. 1986;205:351–4.PubMedCrossRef
167.
go back to reference Agrawal AK, Singhal A, Gupta CM. Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem Biophys Res Commun. 1987;148:357–61.PubMedCrossRef Agrawal AK, Singhal A, Gupta CM. Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem Biophys Res Commun. 1987;148:357–61.PubMedCrossRef
168.
go back to reference Peeters PA, Claessens CA, Eling WM, Crommelin DJ. Immunospecific targeting of liposomes to erythrocytes. Biochem Pharmacol. 1988;37:2215–22.PubMedCrossRef Peeters PA, Claessens CA, Eling WM, Crommelin DJ. Immunospecific targeting of liposomes to erythrocytes. Biochem Pharmacol. 1988;37:2215–22.PubMedCrossRef
169.
go back to reference Peeters PAM, Oussoren C, Eling WMC, Crommelin DJA. Immunospecific targeting of immunoliposomes, F(ab′)2 and IgG to red blood cells in vivo. Biochim Biophys Acta. 1988;943:137–47.PubMedCrossRef Peeters PAM, Oussoren C, Eling WMC, Crommelin DJA. Immunospecific targeting of immunoliposomes, F(ab′)2 and IgG to red blood cells in vivo. Biochim Biophys Acta. 1988;943:137–47.PubMedCrossRef
170.
go back to reference Peeters PAM, Brunink BG, Eling WMC, Crommelin DJA. Therapeutic effect of chloroquine(CQ)-containing immunoliposomes in rats infected with Plasmodium berghei parasitized mouse red blood cells: comparison with combinations of antibodies and CQ or miposomal CQ. Biochim Biophys Acta. 1989;981:269–76.PubMedCrossRef Peeters PAM, Brunink BG, Eling WMC, Crommelin DJA. Therapeutic effect of chloroquine(CQ)-containing immunoliposomes in rats infected with Plasmodium berghei parasitized mouse red blood cells: comparison with combinations of antibodies and CQ or miposomal CQ. Biochim Biophys Acta. 1989;981:269–76.PubMedCrossRef
171.
go back to reference Chandra S, Agrawal AK, Gupta CM. Chloroquine delivery to erythrocytes in Plasmodium berghei-infected mice using antibody-bearing liposomes as drug vehicles. J Biosci. 1991;16:137–44.CrossRef Chandra S, Agrawal AK, Gupta CM. Chloroquine delivery to erythrocytes in Plasmodium berghei-infected mice using antibody-bearing liposomes as drug vehicles. J Biosci. 1991;16:137–44.CrossRef
172.
go back to reference Longmuir KJ, Robertson RT, Haynes SM, Baratta JL, Waring AJ. Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm Res. 2006;23:759–69.PubMedCrossRef Longmuir KJ, Robertson RT, Haynes SM, Baratta JL, Waring AJ. Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm Res. 2006;23:759–69.PubMedCrossRef
173.
go back to reference Haynes SM, Longmuir KJ, Robertson RT, Baratta JL, Waring AJ. Liposomal polyethyleneglycol and polyethyleneglycol-peptide combinations for active targeting to liver in vivo. Drug Deliv. 2008;15:207–17.PubMedCrossRef Haynes SM, Longmuir KJ, Robertson RT, Baratta JL, Waring AJ. Liposomal polyethyleneglycol and polyethyleneglycol-peptide combinations for active targeting to liver in vivo. Drug Deliv. 2008;15:207–17.PubMedCrossRef
174.
go back to reference Robertson RT, Baratta JL, Haynes SM, Longmuir KJ. Liposomes incorporating a Plasmodium amino acid sequence target heparan sulfate binding sites in liver. J Pharm Sci. 2008;97:3257–73.PubMedCrossRef Robertson RT, Baratta JL, Haynes SM, Longmuir KJ. Liposomes incorporating a Plasmodium amino acid sequence target heparan sulfate binding sites in liver. J Pharm Sci. 2008;97:3257–73.PubMedCrossRef
175.
go back to reference Urbán P, Estelrich J, Cortés A, Fernàndez-Busquets X. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J Control Release. 2011;151:202–11.PubMedCrossRef Urbán P, Estelrich J, Cortés A, Fernàndez-Busquets X. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J Control Release. 2011;151:202–11.PubMedCrossRef
176.
go back to reference Urbán P, Estelrich J, Adeva A, Cortés A, Fernàndez-Busquets X. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res Lett. 2011;6:1–9.CrossRef Urbán P, Estelrich J, Adeva A, Cortés A, Fernàndez-Busquets X. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res Lett. 2011;6:1–9.CrossRef
177.
go back to reference Moles E, Urbán P, Jiménez-Díaz MB, Viera-Morilla S, Angulo-Barturen I, Busquets MA, et al. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J Control Release. 2015;210:217–29.PubMedCrossRef Moles E, Urbán P, Jiménez-Díaz MB, Viera-Morilla S, Angulo-Barturen I, Busquets MA, et al. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J Control Release. 2015;210:217–29.PubMedCrossRef
178.
go back to reference Moles E, Moll K, Ch’ng JH, Parini P, Wahlgren M, Fernàndez-Busquets X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release. 2016;241:57–67.PubMedCrossRef Moles E, Moll K, Ch’ng JH, Parini P, Wahlgren M, Fernàndez-Busquets X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release. 2016;241:57–67.PubMedCrossRef
179.
go back to reference Moles E, Galiano S, Gomes A, Quiliano M, Teixeira C, Aldana I, et al. ImmunoPEG liposomes for the targeted delivery of novel lipophilic drugs to red blood cells in a falciparum malaria murine model. Biomaterials. 2017;145:178–91.PubMedCrossRef Moles E, Galiano S, Gomes A, Quiliano M, Teixeira C, Aldana I, et al. ImmunoPEG liposomes for the targeted delivery of novel lipophilic drugs to red blood cells in a falciparum malaria murine model. Biomaterials. 2017;145:178–91.PubMedCrossRef
180.
go back to reference Marques J, Valle-Delgado JJ, Urbán P, Baró E, Prohens R, Mayor A, et al. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine. 2017;13:515–25.PubMedCrossRef Marques J, Valle-Delgado JJ, Urbán P, Baró E, Prohens R, Mayor A, et al. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine. 2017;13:515–25.PubMedCrossRef
181.
go back to reference Biosca A, Dirscherl L, Moles E, Imperial S, Fernàndez-Busquets X. An immunoPEGliposome for targeted antimalarial combination therapy at the nanoscale. Pharmaceutics. 2019;11:341.PubMedCentralCrossRef Biosca A, Dirscherl L, Moles E, Imperial S, Fernàndez-Busquets X. An immunoPEGliposome for targeted antimalarial combination therapy at the nanoscale. Pharmaceutics. 2019;11:341.PubMedCentralCrossRef
182.
go back to reference Ledoux A, Mamede L, Palazzo C, Furst T, Jansen O, De Tullio P, et al. Heparin-coated liposomes improve antiplasmodial activity and reduce the toxicity of poupartone B. Planta Medica Int Open. 2020;07:e73-80.CrossRef Ledoux A, Mamede L, Palazzo C, Furst T, Jansen O, De Tullio P, et al. Heparin-coated liposomes improve antiplasmodial activity and reduce the toxicity of poupartone B. Planta Medica Int Open. 2020;07:e73-80.CrossRef
183.
go back to reference Serghides L, Smith TG, Patel SN, Kain KC. CD36 and malaria: friends or foes? Trends Parasitol. 2003;19:461–9.PubMedCrossRef Serghides L, Smith TG, Patel SN, Kain KC. CD36 and malaria: friends or foes? Trends Parasitol. 2003;19:461–9.PubMedCrossRef
184.
go back to reference Ancsin JB, Kisilevsky R. A binding site for highly sulfated heparan sulfate is identified in the N-terminus of the circumsporozoite protein: significance for malarial sporozoite attachment to hepatocytes. J Biol Chem. 2004;279:21824–32.PubMedCrossRef Ancsin JB, Kisilevsky R. A binding site for highly sulfated heparan sulfate is identified in the N-terminus of the circumsporozoite protein: significance for malarial sporozoite attachment to hepatocytes. J Biol Chem. 2004;279:21824–32.PubMedCrossRef
185.
go back to reference Lyon M, Deakin JA, Gallagher JT. Liver heparan sulfate structure. A novel molecular design. J Biol Chem. 1994;269:11208–15.PubMedCrossRef Lyon M, Deakin JA, Gallagher JT. Liver heparan sulfate structure. A novel molecular design. J Biol Chem. 1994;269:11208–15.PubMedCrossRef
186.
go back to reference Koulnis M, Pop R, Porpiglia E, Shearstone JR, Hidalgo D, Socolovsky M. Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J Vis Exp. 2011;54:6–11. Koulnis M, Pop R, Porpiglia E, Shearstone JR, Hidalgo D, Socolovsky M. Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J Vis Exp. 2011;54:6–11.
187.
go back to reference Suzuki A, Sekiya S, Onishi M, Oshima N, Kiyonari H, Nakauchi H, et al. Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology. 2008;48:1964–78.PubMedCrossRef Suzuki A, Sekiya S, Onishi M, Oshima N, Kiyonari H, Nakauchi H, et al. Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology. 2008;48:1964–78.PubMedCrossRef
188.
go back to reference Horata N, Kalambaheti T, Craig A, Khusmith S. Sequence variation of PfEMP1-DBLα in association with rosette formation in Plasmodium falciparum isolates causing severe and uncomplicated malaria. Malar J. 2009;8:184.PubMedPubMedCentralCrossRef Horata N, Kalambaheti T, Craig A, Khusmith S. Sequence variation of PfEMP1-DBLα in association with rosette formation in Plasmodium falciparum isolates causing severe and uncomplicated malaria. Malar J. 2009;8:184.PubMedPubMedCentralCrossRef
189.
go back to reference Ho M, White NJ. Molecular mechanisms of cytoadherence in malaria. Am J Physiol. 1999;276:C1231–42.PubMedCrossRef Ho M, White NJ. Molecular mechanisms of cytoadherence in malaria. Am J Physiol. 1999;276:C1231–42.PubMedCrossRef
190.
go back to reference Boyle MJ, Richards JS, Gilson PR, Chai W, Beeson JG. Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood. 2010;115:4559–68.PubMedCrossRef Boyle MJ, Richards JS, Gilson PR, Chai W, Beeson JG. Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood. 2010;115:4559–68.PubMedCrossRef
191.
go back to reference Hemmer CJ, Kern P, Holst FG, Nawroth PP, Dietrich M. Neither heparin nor acetylsalicylic acid influence the clinical course in human Plasmodium falciparum malaria: a prospective randomized study. Am J Trop Med Hyg. 1991;45:608–12.PubMedCrossRef Hemmer CJ, Kern P, Holst FG, Nawroth PP, Dietrich M. Neither heparin nor acetylsalicylic acid influence the clinical course in human Plasmodium falciparum malaria: a prospective randomized study. Am J Trop Med Hyg. 1991;45:608–12.PubMedCrossRef
192.
go back to reference Vogt AM, Barragan A, Chen Q, Kironde F, Spillmann D, Wahlgren M. Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1alpha domain of PfEMP1. Blood. 2003;101:2405–11.PubMedCrossRef Vogt AM, Barragan A, Chen Q, Kironde F, Spillmann D, Wahlgren M. Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1alpha domain of PfEMP1. Blood. 2003;101:2405–11.PubMedCrossRef
193.
go back to reference Vogt AM, Winter G, Wahlgren M, Spillmann D. Heparan sulphate identified on human erythrocytes: a Plasmodium falciparum receptor. Biochem J. 2004;381:593–7.PubMedPubMedCentralCrossRef Vogt AM, Winter G, Wahlgren M, Spillmann D. Heparan sulphate identified on human erythrocytes: a Plasmodium falciparum receptor. Biochem J. 2004;381:593–7.PubMedPubMedCentralCrossRef
194.
go back to reference Salanti A, Dahlbäck M, Turner L, Nielsen MA, Barfod L, Magistrado P, et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J Exp Med. 2004;200:1197–203.PubMedPubMedCentralCrossRef Salanti A, Dahlbäck M, Turner L, Nielsen MA, Barfod L, Magistrado P, et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J Exp Med. 2004;200:1197–203.PubMedPubMedCentralCrossRef
195.
go back to reference Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C, et al. Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. Nanomedicine. 2014;10:1719–28.PubMedCrossRef Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C, et al. Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. Nanomedicine. 2014;10:1719–28.PubMedCrossRef
196.
go back to reference Crommelin DJA, Hoogevest PV, Storm G. The role of liposomes in clinical nanomedicine development. What now ? Now what ? J Control Release. 2020;318:256–63.PubMedCrossRef Crommelin DJA, Hoogevest PV, Storm G. The role of liposomes in clinical nanomedicine development. What now ? Now what ? J Control Release. 2020;318:256–63.PubMedCrossRef
197.
go back to reference Barragan A, Spillmann D, Kremsner PG, Wahlgren M, Carlson J. Plasmodium falciparum: molecular background to strain-specific rosette disruption by glycosaminoglycans and sulfated glycoconjugates. Exp Parasitol. 1999;91:133–43.PubMedCrossRef Barragan A, Spillmann D, Kremsner PG, Wahlgren M, Carlson J. Plasmodium falciparum: molecular background to strain-specific rosette disruption by glycosaminoglycans and sulfated glycoconjugates. Exp Parasitol. 1999;91:133–43.PubMedCrossRef
198.
go back to reference Glushakova S, Busse BL, Garten M, Beck JR, Fairhurst RM, Goldberg DE, et al. Exploitation of a newly-identified entry pathway into the malaria parasite-infected erythrocyte to inhibit parasite egress. Sci Rep. 2017;7:12250.PubMedPubMedCentralCrossRef Glushakova S, Busse BL, Garten M, Beck JR, Fairhurst RM, Goldberg DE, et al. Exploitation of a newly-identified entry pathway into the malaria parasite-infected erythrocyte to inhibit parasite egress. Sci Rep. 2017;7:12250.PubMedPubMedCentralCrossRef
199.
200.
go back to reference Van Rooijen N, van Nieuwmegen R. Liposomes in immunology: evidence that their adjuvant effect results from surface exposition of the antigens. Cell Immunol. 1980;49:402–7.PubMedCrossRef Van Rooijen N, van Nieuwmegen R. Liposomes in immunology: evidence that their adjuvant effect results from surface exposition of the antigens. Cell Immunol. 1980;49:402–7.PubMedCrossRef
201.
go back to reference Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–52.CrossRefPubMed Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–52.CrossRefPubMed
202.
go back to reference Bangham AD, Hill MW, Miller NGA. Preparation and use of liposomes as models of biological membranes. Methods Membr Biol. 1974;1:1–68. Bangham AD, Hill MW, Miller NGA. Preparation and use of liposomes as models of biological membranes. Methods Membr Biol. 1974;1:1–68.
203.
204.
205.
go back to reference Alving CR. Design and selection of vaccine adjuvants: animal models and human trials. Vaccine. 2002;20:856–64.CrossRef Alving CR. Design and selection of vaccine adjuvants: animal models and human trials. Vaccine. 2002;20:856–64.CrossRef
206.
go back to reference Alving CR. Design and selection of vaccine adjuvants: animal models and human trials. Vaccine. 2002;20(Suppl. 3):S56-64.PubMedCrossRef Alving CR. Design and selection of vaccine adjuvants: animal models and human trials. Vaccine. 2002;20(Suppl. 3):S56-64.PubMedCrossRef
207.
go back to reference Perrie Y, Crofts F, Devitt A, Griffiths HR, Kastner E, Nadella V. Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev. 2016;99:85–96.PubMedCrossRef Perrie Y, Crofts F, Devitt A, Griffiths HR, Kastner E, Nadella V. Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev. 2016;99:85–96.PubMedCrossRef
209.
go back to reference Marasini N, Ghaffar KA, Skwarczynski M, Toth I. Liposomes as a vaccine delivery system. In: Skwarczynski M, Toth I, editors. Micro and Nano Technologies in vaccine development. Elsevier; 2017. Marasini N, Ghaffar KA, Skwarczynski M, Toth I. Liposomes as a vaccine delivery system. In: Skwarczynski M, Toth I, editors. Micro and Nano Technologies in vaccine development. Elsevier; 2017.
210.
go back to reference Ghaffar KA, Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposomes as nanovaccine delivery systems. Curr Top Med Chem. 2014;14:1194–208.PubMedCrossRef Ghaffar KA, Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposomes as nanovaccine delivery systems. Curr Top Med Chem. 2014;14:1194–208.PubMedCrossRef
211.
go back to reference Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine. 2012;7:1877–93.PubMedCrossRef Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine. 2012;7:1877–93.PubMedCrossRef
213.
go back to reference Artenstein AW, Opal JM, Opal SM, Tramont EC, Peter G, Russell PK. History of U.S. military contributions to the study of vaccines against infectious diseases. Mil Med. 2005;170(Suppl. 4):3–11.PubMedCrossRef Artenstein AW, Opal JM, Opal SM, Tramont EC, Peter G, Russell PK. History of U.S. military contributions to the study of vaccines against infectious diseases. Mil Med. 2005;170(Suppl. 4):3–11.PubMedCrossRef
214.
go back to reference Grabenstein JD, Pittman PR, Greenwood JT, Engler RJM. Immunization to protect the US Armed Forces: heritage, current practice, and prospects. Epidemiol Rev. 2006;28:3–26.PubMedCrossRef Grabenstein JD, Pittman PR, Greenwood JT, Engler RJM. Immunization to protect the US Armed Forces: heritage, current practice, and prospects. Epidemiol Rev. 2006;28:3–26.PubMedCrossRef
215.
go back to reference Ratto-Kim S, Yoon IK, Paris RM, Excler JL, Kim JH, O’Connell RJ. The US military commitment to vaccine development: a century of successes and challenges. Front Immunol. 2018;9:1397.PubMedPubMedCentralCrossRef Ratto-Kim S, Yoon IK, Paris RM, Excler JL, Kim JH, O’Connell RJ. The US military commitment to vaccine development: a century of successes and challenges. Front Immunol. 2018;9:1397.PubMedPubMedCentralCrossRef
216.
go back to reference Alving CR, Detrick B, Richards RL, Lewis MG, Shafferman A, Eddy GA. Novel adjuvant strategies for experimental malaria and AIDS vaccines. Ann N Y Acad Sci. 1993;690:265–75.PubMedCrossRef Alving CR, Detrick B, Richards RL, Lewis MG, Shafferman A, Eddy GA. Novel adjuvant strategies for experimental malaria and AIDS vaccines. Ann N Y Acad Sci. 1993;690:265–75.PubMedCrossRef
217.
go back to reference Alving CR, Richards RL. Liposomes containing Lipid A: a potent nontoxic adjuvant for a human malaria sporozoite vaccine. Immunol Lett. 1990;25:275–9.PubMedCrossRef Alving CR, Richards RL. Liposomes containing Lipid A: a potent nontoxic adjuvant for a human malaria sporozoite vaccine. Immunol Lett. 1990;25:275–9.PubMedCrossRef
218.
go back to reference Matyas GR, Muderhwa JM, Alving CR. Oil-in-water liposomal emulsions for vaccine delivery. Methods Enzymol. 2003;373:34–50.PubMedCrossRef Matyas GR, Muderhwa JM, Alving CR. Oil-in-water liposomal emulsions for vaccine delivery. Methods Enzymol. 2003;373:34–50.PubMedCrossRef
219.
go back to reference Beck Z, Matyas GR, Alving CR. Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate. Biochim Biophys Acta. 2015;1848:775–80.PubMedCrossRef Beck Z, Matyas GR, Alving CR. Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate. Biochim Biophys Acta. 2015;1848:775–80.PubMedCrossRef
220.
go back to reference Alving CR, Richards RL, Moss J, Alving LI, Clements JD, Shiba T, et al. Effectiveness of liposomes as potential carriers of vaccines: applications to cholera toxin and human malaria sporozoite antigen. Vaccine. 1986;4:166–72.PubMedCrossRef Alving CR, Richards RL, Moss J, Alving LI, Clements JD, Shiba T, et al. Effectiveness of liposomes as potential carriers of vaccines: applications to cholera toxin and human malaria sporozoite antigen. Vaccine. 1986;4:166–72.PubMedCrossRef
221.
go back to reference Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16:55–63.PubMedCrossRef Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16:55–63.PubMedCrossRef
222.
go back to reference Ssemaganda A, Giddam AK, Zaman M, Skwarczynski M, Toth I, Stanisic DI, et al. Induction of Plasmodium-specific immune responses using liposome-based vaccines. Front Immunol. 2019;10:135.PubMedPubMedCentralCrossRef Ssemaganda A, Giddam AK, Zaman M, Skwarczynski M, Toth I, Stanisic DI, et al. Induction of Plasmodium-specific immune responses using liposome-based vaccines. Front Immunol. 2019;10:135.PubMedPubMedCentralCrossRef
223.
go back to reference Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV. Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines. 2012;11:733–44.PubMedCrossRef Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV. Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines. 2012;11:733–44.PubMedCrossRef
224.
go back to reference White WI, Cassatt DR, Madsen J, Burke SJ, Woods RM, Wassef NM, et al. Antibody and cytotoxic T-lymphocyte responses to a single liposome-associated peptide antigen. Vaccine. 1995;13:1111–22.PubMedCrossRef White WI, Cassatt DR, Madsen J, Burke SJ, Woods RM, Wassef NM, et al. Antibody and cytotoxic T-lymphocyte responses to a single liposome-associated peptide antigen. Vaccine. 1995;13:1111–22.PubMedCrossRef
225.
go back to reference Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines. 2011;10:471–86.PubMedCrossRef Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines. 2011;10:471–86.PubMedCrossRef
226.
go back to reference Richards RL, Hayre MD, Hockmeyer WT, Alving CR. Liposomes, lipid A, and aluminium hydroxide enhance the immune response to a synthetic malaria sporozoite antigen. Infect Immun. 1988;56:682–6.PubMedPubMedCentralCrossRef Richards RL, Hayre MD, Hockmeyer WT, Alving CR. Liposomes, lipid A, and aluminium hydroxide enhance the immune response to a synthetic malaria sporozoite antigen. Infect Immun. 1988;56:682–6.PubMedPubMedCentralCrossRef
227.
go back to reference Richards RL, Swartz GMJ, Schultz C, Hayre MD, Ward GS, Ballou WR, et al. Immunogenicity of liposomal malaria sporozoite antigen in monkeys: adjuvant effects of aluminium hydroxide and non-pyrogenic liposomal lipid A. Vaccine. 1989;7:506–12.PubMedCrossRef Richards RL, Swartz GMJ, Schultz C, Hayre MD, Ward GS, Ballou WR, et al. Immunogenicity of liposomal malaria sporozoite antigen in monkeys: adjuvant effects of aluminium hydroxide and non-pyrogenic liposomal lipid A. Vaccine. 1989;7:506–12.PubMedCrossRef
228.
go back to reference Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, Gross M, et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci USA. 1992;89:358–62.PubMedPubMedCentralCrossRef Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, Gross M, et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci USA. 1992;89:358–62.PubMedPubMedCentralCrossRef
229.
go back to reference Verma JN, Rao M, Amselem S, Krzych U, Alving CR, Green SJ, et al. Adjuvant effects of liposomes containing lipid A: enhancement of liposomal antigen presentation and recruitment of macrophages. Infect Immun. 1992;60:2438–44.PubMedPubMedCentralCrossRef Verma JN, Rao M, Amselem S, Krzych U, Alving CR, Green SJ, et al. Adjuvant effects of liposomes containing lipid A: enhancement of liposomal antigen presentation and recruitment of macrophages. Infect Immun. 1992;60:2438–44.PubMedPubMedCentralCrossRef
230.
go back to reference Richards RL, Rao M, Wassef NM, Glenn GM, Rothwell SW, Alving CR. Liposomes containing lipid A serve as an adjuvant for induction of antibody and cytotoxic T-cell responses against RTS,S malaria antigen. Infect Immun. 1998;66:2859–65.PubMedPubMedCentralCrossRef Richards RL, Rao M, Wassef NM, Glenn GM, Rothwell SW, Alving CR. Liposomes containing lipid A serve as an adjuvant for induction of antibody and cytotoxic T-cell responses against RTS,S malaria antigen. Infect Immun. 1998;66:2859–65.PubMedPubMedCentralCrossRef
231.
go back to reference Sharma SK, Gupta C, Dwivedi V, Misra-Bhattacharya S, Mohammad O. Prophylactic potential of liposomized integral membrane protein of Plasmodium yoelii nigeriensis against blood stage infection in BALB/c mice. Vaccine. 2007;25:2103–11.PubMedCrossRef Sharma SK, Gupta C, Dwivedi V, Misra-Bhattacharya S, Mohammad O. Prophylactic potential of liposomized integral membrane protein of Plasmodium yoelii nigeriensis against blood stage infection in BALB/c mice. Vaccine. 2007;25:2103–11.PubMedCrossRef
232.
go back to reference Tyagi RK, Garg NK, Jadon R, Sahu T, Katare OP, Dalai SK, et al. Elastic liposome-mediated transdermal immunization enhanced the immunogenicity of P. falciparum surface antigen, MSP-119. Vaccine. 2015;33:4630–8.PubMedCrossRef Tyagi RK, Garg NK, Jadon R, Sahu T, Katare OP, Dalai SK, et al. Elastic liposome-mediated transdermal immunization enhanced the immunogenicity of P. falciparum surface antigen, MSP-119. Vaccine. 2015;33:4630–8.PubMedCrossRef
233.
go back to reference Regules JA, Cicatelli SB, Bennett JW, Paolino KM, Twomey PS, Moon JE, et al. Fractional third and fourth dose of RTS,S/AS01 malaria candidate vaccine: a phase 2a controlled human malaria parasite infection and immunogenicity study. J Infect Dis. 2016;214:762–71.PubMedCrossRef Regules JA, Cicatelli SB, Bennett JW, Paolino KM, Twomey PS, Moon JE, et al. Fractional third and fourth dose of RTS,S/AS01 malaria candidate vaccine: a phase 2a controlled human malaria parasite infection and immunogenicity study. J Infect Dis. 2016;214:762–71.PubMedCrossRef
234.
go back to reference Seth L, Bingham Ferlez KM, Kaba SA, Musser DM, Emadi S, Matyas GR, et al. Development of a self-assembling protein nanoparticle vaccine targeting Plasmodium falciparum circumsporozoite protein delivered in three Army Liposome Formulation adjuvants. Vaccine. 2017;35:5448–54.PubMedCrossRef Seth L, Bingham Ferlez KM, Kaba SA, Musser DM, Emadi S, Matyas GR, et al. Development of a self-assembling protein nanoparticle vaccine targeting Plasmodium falciparum circumsporozoite protein delivered in three Army Liposome Formulation adjuvants. Vaccine. 2017;35:5448–54.PubMedCrossRef
235.
go back to reference Huang W-C, Deng B, Lin C, Carter KA, Geng J, Razi A, et al. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. Nat Nanotechnol. 2018;13:1174–81.PubMedPubMedCentralCrossRef Huang W-C, Deng B, Lin C, Carter KA, Geng J, Razi A, et al. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. Nat Nanotechnol. 2018;13:1174–81.PubMedPubMedCentralCrossRef
236.
go back to reference Dame JB, Williams JL, McCutchan TF, Weber JL, Wirtz RA, Hockmeyer WT, et al. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science. 1984;225:593–9.PubMedCrossRef Dame JB, Williams JL, McCutchan TF, Weber JL, Wirtz RA, Hockmeyer WT, et al. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science. 1984;225:593–9.PubMedCrossRef
237.
go back to reference Young JF, Hockmeyer WT, Gross M, Ballou WR, Wirtz RA, Trosper JH, et al. Expression of Plasmodium falciparum circumsporozoite proteins in Escherichia coli for potential use in a human malaria vaccine. Science. 1985;228:958–62.PubMedCrossRef Young JF, Hockmeyer WT, Gross M, Ballou WR, Wirtz RA, Trosper JH, et al. Expression of Plasmodium falciparum circumsporozoite proteins in Escherichia coli for potential use in a human malaria vaccine. Science. 1985;228:958–62.PubMedCrossRef
238.
go back to reference Ballou WR, Rothbard J, Wirtz RA, Gordon DM, Williams JS, Gore RW, et al. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science. 1985;228:996–9.PubMedCrossRef Ballou WR, Rothbard J, Wirtz RA, Gordon DM, Williams JS, Gore RW, et al. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science. 1985;228:996–9.PubMedCrossRef
239.
go back to reference Webster HK, Boudreau EF, Pang LW, Permpanich B, Sookto P, Wirtz RA. Development of immunity in natural Plasmodium falciparum malaria: antibodies to the Falciparum Sporozoite Vaccine 1 Antigen (R32tet32). J Clin Microbiol. 1987;25:1002–8.PubMedPubMedCentralCrossRef Webster HK, Boudreau EF, Pang LW, Permpanich B, Sookto P, Wirtz RA. Development of immunity in natural Plasmodium falciparum malaria: antibodies to the Falciparum Sporozoite Vaccine 1 Antigen (R32tet32). J Clin Microbiol. 1987;25:1002–8.PubMedPubMedCentralCrossRef
240.
go back to reference Webster HK, Ho M, Looareesuwan S, Pavanand K, Wattanagoon Y, Warrell DA, et al. Lymphocyte responsiveness to a candidate malaria sporozoite vaccine (R32tet32) of individuals with naturally acquired Plasmodium falciparum malaria. Am J Trop Med Hyg. 1988;38:37–41.PubMedCrossRef Webster HK, Ho M, Looareesuwan S, Pavanand K, Wattanagoon Y, Warrell DA, et al. Lymphocyte responsiveness to a candidate malaria sporozoite vaccine (R32tet32) of individuals with naturally acquired Plasmodium falciparum malaria. Am J Trop Med Hyg. 1988;38:37–41.PubMedCrossRef
241.
go back to reference Ballou WR, Sherwood J, Neva F, Gordon D, Wirtz R, Wasserman G, et al. Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet. 1987;329:1277–81.CrossRef Ballou WR, Sherwood J, Neva F, Gordon D, Wirtz R, Wasserman G, et al. Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet. 1987;329:1277–81.CrossRef
242.
go back to reference Alving CR, Richards RL, Hayre MD, Hockmeyer WT, Wirtz RA. Liposomes as carriers of vaccines: development of a liposomal malaria vaccine. In: Gregoriadis G, Allison AC, Poste G, editors. Immunological adjuvants and vaccines. Boston, MA: Springer; 1989. Alving CR, Richards RL, Hayre MD, Hockmeyer WT, Wirtz RA. Liposomes as carriers of vaccines: development of a liposomal malaria vaccine. In: Gregoriadis G, Allison AC, Poste G, editors. Immunological adjuvants and vaccines. Boston, MA: Springer; 1989.
243.
go back to reference Ballou WR, Cahill CP. Two decades of commitment to malaria vaccine development: GlaxoSmithKline Biologicals. Am J Trop Med Hyg. 2007;77(Suppl. 6):289–95.PubMedCrossRef Ballou WR, Cahill CP. Two decades of commitment to malaria vaccine development: GlaxoSmithKline Biologicals. Am J Trop Med Hyg. 2007;77(Suppl. 6):289–95.PubMedCrossRef
244.
go back to reference Rutgers T, Gordon D, Gathoye AM, Hollingdale M, Hockmeyer W, Rosenberg M, et al. Hepatitis B surface antigen as carrier matrix for the repetitive epitope of the circumsporozoite protein of Plasmodium falciparum. Nat Technology. 1988;6:1065–70. Rutgers T, Gordon D, Gathoye AM, Hollingdale M, Hockmeyer W, Rosenberg M, et al. Hepatitis B surface antigen as carrier matrix for the repetitive epitope of the circumsporozoite protein of Plasmodium falciparum. Nat Technology. 1988;6:1065–70.
245.
go back to reference Gordon DM, McGovern TW, Krzych U, Cohen JC, Schneider I, LaChance R, et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J Infect Dis. 1995;171:1576–85.PubMedCrossRef Gordon DM, McGovern TW, Krzych U, Cohen JC, Schneider I, LaChance R, et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J Infect Dis. 1995;171:1576–85.PubMedCrossRef
246.
go back to reference Heppner DG, Gordon DM, Gross M, Wellde B, Leitner W, Krzych U, et al. Safety, immunogenicity, and efficacy of Plasmodium falciparum repeatless circumsporozoite protein vaccine encapsulated in liposomes. J Infect Dis. 1996;174:361–6.PubMedCrossRef Heppner DG, Gordon DM, Gross M, Wellde B, Leitner W, Krzych U, et al. Safety, immunogenicity, and efficacy of Plasmodium falciparum repeatless circumsporozoite protein vaccine encapsulated in liposomes. J Infect Dis. 1996;174:361–6.PubMedCrossRef
247.
go back to reference Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N Engl J Med. 1997;336:86–91.PubMedCrossRef Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N Engl J Med. 1997;336:86–91.PubMedCrossRef
248.
go back to reference GlaxoSmithKline (GSK). RTS,S/AS01 candidate malaria vaccine summary for the SAGE meeting October 2009. GSK. 2009:1–14. GlaxoSmithKline (GSK). RTS,S/AS01 candidate malaria vaccine summary for the SAGE meeting October 2009. GSK. 2009:1–14.
249.
go back to reference RTS,S Clinical Trials Partnership. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 2014;11:e1001685. RTS,S Clinical Trials Partnership. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 2014;11:e1001685.
250.
go back to reference RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45. RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.
251.
go back to reference Leroux-Roels G, Leroux-Roels I, Clement F, Ofori-Anyinam O, Lievens M, Jongert E, et al. Evaluation of the immune response to RTS,S/AS01 and RTS,S/AS02 adjuvanted vaccines: randomized, double-blind study in malaria-naïve adults. Hum Vaccines Immunother. 2014;10:2211–9.CrossRef Leroux-Roels G, Leroux-Roels I, Clement F, Ofori-Anyinam O, Lievens M, Jongert E, et al. Evaluation of the immune response to RTS,S/AS01 and RTS,S/AS02 adjuvanted vaccines: randomized, double-blind study in malaria-naïve adults. Hum Vaccines Immunother. 2014;10:2211–9.CrossRef
252.
go back to reference Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N Engl J Med. 2016;374:2519–29.PubMedPubMedCentralCrossRef Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N Engl J Med. 2016;374:2519–29.PubMedPubMedCentralCrossRef
253.
go back to reference Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BGNO, Kabwende AL, et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med. 2012;367:2284–95.PubMedCrossRef Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BGNO, Kabwende AL, et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med. 2012;367:2284–95.PubMedCrossRef
254.
go back to reference Heppner DGJ, Kester KE, Ockenhouse CF, Tornieporth N, Ofori O, Lyon JA, et al. Towards an RTS, S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine. 2005;23:2243–50.PubMedCrossRef Heppner DGJ, Kester KE, Ockenhouse CF, Tornieporth N, Ofori O, Lyon JA, et al. Towards an RTS, S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine. 2005;23:2243–50.PubMedCrossRef
255.
go back to reference European medicine agency (EMA). First malaria vaccine receives positive scientific opinion from EMA. EMA/CHMP/488348/2015. European medicine agency (EMA). First malaria vaccine receives positive scientific opinion from EMA. EMA/CHMP/488348/2015.
256.
go back to reference WHO. Update on RTS,S Malaria vaccine implementation Programme. Geneva: World Health Organization; 2019. WHO. Update on RTS,S Malaria vaccine implementation Programme. Geneva: World Health Organization; 2019.
257.
go back to reference Dimala CA, Kika BT, Kadia BM, Blencowe H. Current challenges and proposed solutions to the effective implementation of the RTS,S/AS01 malaria vaccine program in Sub-Saharan Africa: a systematic review. PLoS ONE. 2018;13:e0209744.PubMedPubMedCentralCrossRef Dimala CA, Kika BT, Kadia BM, Blencowe H. Current challenges and proposed solutions to the effective implementation of the RTS,S/AS01 malaria vaccine program in Sub-Saharan Africa: a systematic review. PLoS ONE. 2018;13:e0209744.PubMedPubMedCentralCrossRef
258.
go back to reference Genito CJ, Beck Z, Phares TW, Kalle F, Limbach KJ, Stefaniak ME, et al. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013. Vaccine. 2017;35:3865–74.PubMedCrossRef Genito CJ, Beck Z, Phares TW, Kalle F, Limbach KJ, Stefaniak ME, et al. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013. Vaccine. 2017;35:3865–74.PubMedCrossRef
259.
go back to reference Cawlfield A, Genito CJ, Beck Z, Bergmann-Leitner ES, Bitzer AA, Soto K, et al. Safety, toxicity and immunogenicity of a malaria vaccine based on the circumsporozoite protein (FMP013) with the adjuvant Army Liposome Formulation containing QS21 (ALFQ). Vaccine. 2019;37:3793–803.PubMedCrossRef Cawlfield A, Genito CJ, Beck Z, Bergmann-Leitner ES, Bitzer AA, Soto K, et al. Safety, toxicity and immunogenicity of a malaria vaccine based on the circumsporozoite protein (FMP013) with the adjuvant Army Liposome Formulation containing QS21 (ALFQ). Vaccine. 2019;37:3793–803.PubMedCrossRef
260.
go back to reference Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40:343–72.PubMedPubMedCentralCrossRef Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40:343–72.PubMedPubMedCentralCrossRef
261.
go back to reference Miller LH, Roberts T, Shahabuddin M, McCutchan TF. Analysis of sequence diversity in the Plasmodium falciparum Merozoite Surface Protein-1 (MSP-1). Mol Biochem Parasitol. 1993;59:1–14.PubMedCrossRef Miller LH, Roberts T, Shahabuddin M, McCutchan TF. Analysis of sequence diversity in the Plasmodium falciparum Merozoite Surface Protein-1 (MSP-1). Mol Biochem Parasitol. 1993;59:1–14.PubMedCrossRef
262.
go back to reference Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Werninghaus K, et al. Cationic liposomes formulated with synthetic Mycobacterial Cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS ONE. 2008;3:e3116.PubMedPubMedCentralCrossRef Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Werninghaus K, et al. Cationic liposomes formulated with synthetic Mycobacterial Cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS ONE. 2008;3:e3116.PubMedPubMedCentralCrossRef
263.
go back to reference Tyagi RK, Garg NK, Dalai SK, Awasthi A. Transdermal immunization of P. falciparum Surface Antigen (MSP-119) via elastic liposomes confers robust immunogenicity. Hum Vaccines Immunother. 2016;12:990–2.CrossRef Tyagi RK, Garg NK, Dalai SK, Awasthi A. Transdermal immunization of P. falciparum Surface Antigen (MSP-119) via elastic liposomes confers robust immunogenicity. Hum Vaccines Immunother. 2016;12:990–2.CrossRef
264.
go back to reference Giddam AK, Reiman JM, Zaman M, Skwarczynski M, Toth I, Good MF. Semi-synthetic whole parasite vaccine designed to protect against blood stage malaria. Acta Biomater. 2016;44:295–303.PubMedCrossRef Giddam AK, Reiman JM, Zaman M, Skwarczynski M, Toth I, Good MF. Semi-synthetic whole parasite vaccine designed to protect against blood stage malaria. Acta Biomater. 2016;44:295–303.PubMedCrossRef
265.
go back to reference Ray P, Sahoo N, Singh B, Kironde FAS. Serum antibody Immunoglobulin G of mice convalescent from Plasmodium yoelii infection inhibits growth of Plasmodium falciparum in vitro: blood stage antigens of P. falciparum involved in interspecies cross-reactive inhibition of parasite growth. Infect Immun. 1994;62:2354–61.PubMedPubMedCentralCrossRef Ray P, Sahoo N, Singh B, Kironde FAS. Serum antibody Immunoglobulin G of mice convalescent from Plasmodium yoelii infection inhibits growth of Plasmodium falciparum in vitro: blood stage antigens of P. falciparum involved in interspecies cross-reactive inhibition of parasite growth. Infect Immun. 1994;62:2354–61.PubMedPubMedCentralCrossRef
266.
go back to reference Barr PJ, Green KM, Gibson HL, Bathurst IC, Quakyi IA, Kaslow DC. Recombinant Pfs25 Protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. J Exp Med. 1991;174:1203–8.PubMedCrossRef Barr PJ, Green KM, Gibson HL, Bathurst IC, Quakyi IA, Kaslow DC. Recombinant Pfs25 Protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. J Exp Med. 1991;174:1203–8.PubMedCrossRef
267.
go back to reference Kaslow DC, Bathurst IC, Lensen T, Ponnudurai T, Barr PJ, Keister DB. Saccharomyces cerevisiae recombinant Pfs25 adsorbed to alum elicits antibodies that block transmission of Plasmodium falciparum. Infect Immun. 1994;62:5576–80.PubMedPubMedCentralCrossRef Kaslow DC, Bathurst IC, Lensen T, Ponnudurai T, Barr PJ, Keister DB. Saccharomyces cerevisiae recombinant Pfs25 adsorbed to alum elicits antibodies that block transmission of Plasmodium falciparum. Infect Immun. 1994;62:5576–80.PubMedPubMedCentralCrossRef
268.
go back to reference Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S, et al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with Montanide ISA 51. PLoS ONE. 2008;3:2636.CrossRef Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S, et al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with Montanide ISA 51. PLoS ONE. 2008;3:2636.CrossRef
269.
go back to reference Malkin EM, Durbin AP, Diemert DJ, Sattabongkot J, Wu Y, Miura K, et al. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine. 2005;23:3131–8.PubMedCrossRef Malkin EM, Durbin AP, Diemert DJ, Sattabongkot J, Wu Y, Miura K, et al. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine. 2005;23:3131–8.PubMedCrossRef
270.
go back to reference Tiwari S, Goyal AK, Mishra N, Khatri K, Vaidya B, Mehta A, et al. Development and characterization of novel carrier gel core liposomes based transmission blocking malaria vaccine. J Control Release. 2009;140:157–65.PubMedCrossRef Tiwari S, Goyal AK, Mishra N, Khatri K, Vaidya B, Mehta A, et al. Development and characterization of novel carrier gel core liposomes based transmission blocking malaria vaccine. J Control Release. 2009;140:157–65.PubMedCrossRef
271.
go back to reference Tiwari S, Goyal A, Khatri K, Mishra N, Vyas S. Gel core liposomes: an advanced carrier for improved vaccine delivery. J Microencapsul. 2009;26:75–82.PubMedCrossRef Tiwari S, Goyal A, Khatri K, Mishra N, Vyas S. Gel core liposomes: an advanced carrier for improved vaccine delivery. J Microencapsul. 2009;26:75–82.PubMedCrossRef
274.
go back to reference Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity. Drug Deliv Transl Res. 2020;10:1095–110.PubMedCrossRefPubMedCentral Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity. Drug Deliv Transl Res. 2020;10:1095–110.PubMedCrossRefPubMedCentral
275.
go back to reference Viswanathan P, Muralidaran Y, Ragavan G. Challenges in oral drug delivery: a nano-based strategy to overcome. In: Nanostructures for oral medicine. , editor. Andronescu E, Grumezescu AM. Micro and Nano Technologies. Bucharest: Elsevier; 2017. Viswanathan P, Muralidaran Y, Ragavan G. Challenges in oral drug delivery: a nano-based strategy to overcome. In: Nanostructures for oral medicine. , editor. Andronescu E, Grumezescu AM. Micro and Nano Technologies. Bucharest: Elsevier; 2017.
276.
go back to reference He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9:36–48.PubMedCrossRef He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9:36–48.PubMedCrossRef
277.
go back to reference Daeihamed M, Dadashzadeh S, Haeri A, Akhlaghi MF. Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv. 2017;14:289–303.PubMed Daeihamed M, Dadashzadeh S, Haeri A, Akhlaghi MF. Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv. 2017;14:289–303.PubMed
278.
go back to reference Coma-Cros EM, Biosca A, Lantero E, Manca ML, Caddeo C, Gutiérrez L, et al. Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes. Int J Mol Sci. 2018;19:1361.CrossRef Coma-Cros EM, Biosca A, Lantero E, Manca ML, Caddeo C, Gutiérrez L, et al. Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes. Int J Mol Sci. 2018;19:1361.CrossRef
279.
go back to reference Manconi M, Manca ML, Escribano-Ferrer E, Coma-Cros EM, Biosca A, Lantero E, et al. Nanoformulation of curcumin-loaded Eudragit-nutriosomes to counteract malaria infection by a dual strategy: improving antioxidant intestinal activity and systemic efficacy. Int J Pharm. 2019;556:82–8.PubMedCrossRef Manconi M, Manca ML, Escribano-Ferrer E, Coma-Cros EM, Biosca A, Lantero E, et al. Nanoformulation of curcumin-loaded Eudragit-nutriosomes to counteract malaria infection by a dual strategy: improving antioxidant intestinal activity and systemic efficacy. Int J Pharm. 2019;556:82–8.PubMedCrossRef
280.
go back to reference Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:1–11.CrossRef Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:1–11.CrossRef
281.
go back to reference Pujol A, Urbán P, Riera C, Fisa R, Molina I, Salvador F, et al. Application of quantum dots to the study of liposome targeting in leishmaniasis and malaria. IJTAN. 2014;2:1–8. Pujol A, Urbán P, Riera C, Fisa R, Molina I, Salvador F, et al. Application of quantum dots to the study of liposome targeting in leishmaniasis and malaria. IJTAN. 2014;2:1–8.
282.
go back to reference Gamo F, Sanz LM, Vidal J, Cozar CD, Alvarez E, Lavandera J, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–10.PubMedCrossRef Gamo F, Sanz LM, Vidal J, Cozar CD, Alvarez E, Lavandera J, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–10.PubMedCrossRef
283.
go back to reference Sanchez CP, Dave A, Stein WD, Lanzer M. Transporters as mediators of drug resistance in Plasmodium falciparum. Int J Parasitol. 2010;40:1109–18.PubMedCrossRef Sanchez CP, Dave A, Stein WD, Lanzer M. Transporters as mediators of drug resistance in Plasmodium falciparum. Int J Parasitol. 2010;40:1109–18.PubMedCrossRef
285.
go back to reference Padmanaban G, Nagaraj VA, Rangarajan PN. Artemisinin-based combination with curcumin adds a new dimension to malaria therapy. Curr Sci. 2012;102:704–11. Padmanaban G, Nagaraj VA, Rangarajan PN. Artemisinin-based combination with curcumin adds a new dimension to malaria therapy. Curr Sci. 2012;102:704–11.
286.
go back to reference Memvanga PB. Lipid-based formulations for oral delivery of poorly water soluble antimalarial drugs. PhD thesis. Université catholique de Louvain. Brussels; 2013. Memvanga PB. Lipid-based formulations for oral delivery of poorly water soluble antimalarial drugs. PhD thesis. Université catholique de Louvain. Brussels; 2013.
287.
go back to reference Vathsala PG, Dende C, Nagaraj VA, Bhattacharya D, Das G, Rangarajan PN, et al. Curcumin-arteether combination therapy of Plasmodium berghei-infected mice prevents recrudescence through immunomodulation. PLoS ONE. 2012;7:1–10.CrossRef Vathsala PG, Dende C, Nagaraj VA, Bhattacharya D, Das G, Rangarajan PN, et al. Curcumin-arteether combination therapy of Plasmodium berghei-infected mice prevents recrudescence through immunomodulation. PLoS ONE. 2012;7:1–10.CrossRef
288.
go back to reference Kyes S, Horrocks P, Newbold C. Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol. 2001;55:673–707.PubMedCrossRef Kyes S, Horrocks P, Newbold C. Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol. 2001;55:673–707.PubMedCrossRef
289.
go back to reference Ploemen IHJ, Prudencio M, Douradinha BG, Ramesar J, Fonager J, van Gemert G-J, et al. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLoS ONE. 2009;4:e7881.PubMedPubMedCentralCrossRef Ploemen IHJ, Prudencio M, Douradinha BG, Ramesar J, Fonager J, van Gemert G-J, et al. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLoS ONE. 2009;4:e7881.PubMedPubMedCentralCrossRef
290.
go back to reference Killick-Kendrick R. Taxonomy, zoogeography and evolution. In: Killick-Kendrick R, Peters W, editors. Rodent malaria. London: Academic Press; 1978. Killick-Kendrick R. Taxonomy, zoogeography and evolution. In: Killick-Kendrick R, Peters W, editors. Rodent malaria. London: Academic Press; 1978.
292.
go back to reference Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8:e1002401.PubMedPubMedCentralCrossRef Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8:e1002401.PubMedPubMedCentralCrossRef
293.
go back to reference Taylor-Robinson AW. Validity of modelling cerebral malaria in mice: argument and counter argument. J Neuroparasitology. 2010;1:45–9.CrossRef Taylor-Robinson AW. Validity of modelling cerebral malaria in mice: argument and counter argument. J Neuroparasitology. 2010;1:45–9.CrossRef
294.
go back to reference Langhorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10:23.PubMedPubMedCentralCrossRef Langhorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10:23.PubMedPubMedCentralCrossRef
296.
go back to reference Mahmoudi S, Keshavarz H. Efficacy of phase 3 trial of RTS,S/AS01 malaria vaccine: the need for an alternative development plan. Hum Vaccines Immunother. 2017;13:2098–101.CrossRef Mahmoudi S, Keshavarz H. Efficacy of phase 3 trial of RTS,S/AS01 malaria vaccine: the need for an alternative development plan. Hum Vaccines Immunother. 2017;13:2098–101.CrossRef
297.
go back to reference Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release. 2019;303:130–50.PubMedPubMedCentralCrossRef Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release. 2019;303:130–50.PubMedPubMedCentralCrossRef
298.
go back to reference Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci. 2011;120(Suppl. 1):S109–29.PubMedCrossRef Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci. 2011;120(Suppl. 1):S109–29.PubMedCrossRef
299.
go back to reference Aditya NP, Vathsala PG, Vieira V, Murthy RSR, Souto EB. Advances in nanomedicines for malaria treatment. Adv Colloid Interface Sci. 2013;201–202:1–17.PubMedCrossRef Aditya NP, Vathsala PG, Vieira V, Murthy RSR, Souto EB. Advances in nanomedicines for malaria treatment. Adv Colloid Interface Sci. 2013;201–202:1–17.PubMedCrossRef
Metadata
Title
Liposomes for malaria management: the evolution from 1980 to 2020
Authors
Patrick B. Memvanga
Christian I. Nkanga
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03858-0

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.