Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Plasmodium Falciparum | Research

Efficacy and safety of artesunate–amodiaquine and artemether–lumefantrine and prevalence of molecular markers associated with resistance, Guinea: an open-label two-arm randomised controlled trial

Authors: Abdoul Habib Beavogui, Alioune Camara, Alexandre Delamou, Mamadou Saliou Diallo, Abdoulaye Doumbouya, Karifa Kourouma, Patrice Bouedouno, Timothée Guilavogui, Samaly dos Santos Souza, Julia Kelley, Eldin Talundzic, Aissata Fofana, Mateusz M. Plucinski

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Anti-malarial resistance is a threat to recent gains in malaria control. This study aimed to assess the efficacy and safety of artesunate–amodiaquine (ASAQ) and artemether–lumefantrine (AL) in the management of uncomplicated malaria and to measure the prevalence of molecular markers of resistance of Plasmodium falciparum in sentinel sites in Maferinyah and Labé Health Districts in Guinea in 2016.

Methods

This was a two-arm randomised controlled trial of the efficacy of AL and ASAQ among children aged 6–59 months with uncomplicated Plasmodium falciparum malaria in two sites. Children were followed for 28 days to assess clinical and parasitological response. The primary outcome was the Kaplan–Meier estimate of Day 28 (D28) efficacy after correction by microsatellite-genotyping. Pre-treatment (D0) and day of failure samples were assayed for molecular markers of resistance in the pfk13 and pfmdr1 genes.

Results

A total of 421 participants were included with 211 participants in the Maferinyah site and 210 in Labé. No early treatment failure was observed in any study arms. However, 22 (5.3%) participants developed a late treatment failure (8 in the ASAQ arm and 14 in the AL arm), which were further classified as 2 recrudescences and 20 reinfections. The Kaplan–Meier estimate of the corrected efficacy at D28 was 100% for both AL and ASAQ in Maferinyah site and 99% (95% Confidence Interval: 97.2–100%) for ASAQ and 99% (97.1–100%) for AL in Labé. The majority of successfully analysed D0 (98%, 380/389) and all day of failure (100%, 22/22) samples were wild type for pfk13. All 9 observed pfk13 mutations were polymorphisms not associated with artemisinin resistance. The NFD haplotype was the predominant haplotype in both D0 (197/362, 54%) and day of failure samples (11/18, 61%) successfully analysed for pfmdr1.

Conclusion

This study observed high efficacy and safety of both ASAQ and AL in Guinea, providing evidence for their continued use to treat uncomplicated malaria. Continued monitoring of ACT efficacy and safety and molecular makers of resistance in Guinea is important to detect emergence of parasite resistance and to inform evidence-based malaria treatment policies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, et al. The prevalence of Plasmodium falciparum in sub Saharan Africa since 1900. Nature. 2017;550:515.CrossRef Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, et al. The prevalence of Plasmodium falciparum in sub Saharan Africa since 1900. Nature. 2017;550:515.CrossRef
5.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRef Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRef
7.
go back to reference Ntamba YL, Mavoko HM, Kalabuanga M, Fungula B, Nsengi PMN, Lutete GT, et al. Safety and tolerability of artesunate–amodiaquine, artemether–lumefantrine and quinine plus clindamycin in the treatment of uncomplicated Plasmodium falciparum malaria in Kinshasa, the Democratic Republic of the Congo. PLoS ONE. 2019;14:e0222379.CrossRef Ntamba YL, Mavoko HM, Kalabuanga M, Fungula B, Nsengi PMN, Lutete GT, et al. Safety and tolerability of artesunate–amodiaquine, artemether–lumefantrine and quinine plus clindamycin in the treatment of uncomplicated Plasmodium falciparum malaria in Kinshasa, the Democratic Republic of the Congo. PLoS ONE. 2019;14:e0222379.CrossRef
8.
go back to reference Kakolwa MA, Mahende MK, Ishengoma DS, Mandara CI, Ngasala B, Kamugisha E, et al. Efficacy and safety of artemisinin-based combination therapy, and molecular markers for artemisinin and piperaquine resistance in mainland Tanzania. Malar J. 2018;17:369.CrossRef Kakolwa MA, Mahende MK, Ishengoma DS, Mandara CI, Ngasala B, Kamugisha E, et al. Efficacy and safety of artemisinin-based combination therapy, and molecular markers for artemisinin and piperaquine resistance in mainland Tanzania. Malar J. 2018;17:369.CrossRef
9.
go back to reference Davlantes E, Dimbu PR, Ferreira CM, Florinda Joao M, Pode D, Félix J, et al. Efficacy and safety of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2017. Malar J. 2018;17:144.CrossRef Davlantes E, Dimbu PR, Ferreira CM, Florinda Joao M, Pode D, Félix J, et al. Efficacy and safety of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2017. Malar J. 2018;17:144.CrossRef
10.
go back to reference Yeka A, Kigozi R, Conrad MD, Lugemwa M, Okui P, Katureebe C, et al. Artesunate/amodiaquine versus artemether/lumefantrine for the treatment of uncomplicated malaria in Uganda: a randomized trial. J Infect Dis. 2016;213:1134–42.CrossRef Yeka A, Kigozi R, Conrad MD, Lugemwa M, Okui P, Katureebe C, et al. Artesunate/amodiaquine versus artemether/lumefantrine for the treatment of uncomplicated malaria in Uganda: a randomized trial. J Infect Dis. 2016;213:1134–42.CrossRef
11.
go back to reference Ishengoma DS, Mandara CI, Francis F, Talundzic E, Lucchi NW, Ngasala B, et al. Efficacy and safety of artemether–lumefantrine for the treatment of uncomplicated malaria and prevalence of Pfk13 and Pfmdr1 polymorphisms after a decade of using artemisinin-based combination therapy in mainland Tanzania. Malar J. 2019;18:88.CrossRef Ishengoma DS, Mandara CI, Francis F, Talundzic E, Lucchi NW, Ngasala B, et al. Efficacy and safety of artemether–lumefantrine for the treatment of uncomplicated malaria and prevalence of Pfk13 and Pfmdr1 polymorphisms after a decade of using artemisinin-based combination therapy in mainland Tanzania. Malar J. 2019;18:88.CrossRef
12.
go back to reference Plucinski MM, Talundzic E, Morton L, Dimbu PR, Macaia AP, Fortes F, et al. Efficacy of artemether–lumefantrine and dihydroartemisinin–piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge Provinces, angola. Antimicrob Agents Chemother. 2015;59:437–43.CrossRef Plucinski MM, Talundzic E, Morton L, Dimbu PR, Macaia AP, Fortes F, et al. Efficacy of artemether–lumefantrine and dihydroartemisinin–piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge Provinces, angola. Antimicrob Agents Chemother. 2015;59:437–43.CrossRef
13.
go back to reference Fançony C, Brito M, Gil JP. Plasmodium falciparum drug resistance in Angola. Malar J. 2016;15:74.CrossRef Fançony C, Brito M, Gil JP. Plasmodium falciparum drug resistance in Angola. Malar J. 2016;15:74.CrossRef
14.
go back to reference Adegbite BR, Edoa JR, Honkpehedji YJ, Zinsou FJ, Dejon-Agobe JC, Mbong-Ngwese M, et al. Monitoring of efficacy, tolerability and safety of artemether–lumefantrine and artesunate–amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Lambaréné, Gabon: an open-label clinical trial. Malar J. 2019;18:424.CrossRef Adegbite BR, Edoa JR, Honkpehedji YJ, Zinsou FJ, Dejon-Agobe JC, Mbong-Ngwese M, et al. Monitoring of efficacy, tolerability and safety of artemether–lumefantrine and artesunate–amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Lambaréné, Gabon: an open-label clinical trial. Malar J. 2019;18:424.CrossRef
15.
go back to reference Whegang Youdom S, Chiabi A, Basco LK. Monitoring the efficacy and safety of artemisinin-based combination therapies: a review and network meta-analysis of antimalarial therapeutic efficacy trials in Cameroon. Drugs R D. 2019;19:1–14.CrossRef Whegang Youdom S, Chiabi A, Basco LK. Monitoring the efficacy and safety of artemisinin-based combination therapies: a review and network meta-analysis of antimalarial therapeutic efficacy trials in Cameroon. Drugs R D. 2019;19:1–14.CrossRef
16.
go back to reference Bonnet M, Roper C, Félix M, Coulibaly L, Kankolongo GM, Guthmann JP. Efficacy of antimalarial treatment in Guinea: in vivo study of two artemisinin combination therapies in Dabola and molecular markers of resistance to sulphadoxine–pyrimethamine in N’Zérékoré. Malar J. 2007;6:54.CrossRef Bonnet M, Roper C, Félix M, Coulibaly L, Kankolongo GM, Guthmann JP. Efficacy of antimalarial treatment in Guinea: in vivo study of two artemisinin combination therapies in Dabola and molecular markers of resistance to sulphadoxine–pyrimethamine in N’Zérékoré. Malar J. 2007;6:54.CrossRef
17.
go back to reference Sagara I, Habib Beavogui A, Zongo I, Soulama I, Borghini-Fuhrer I, Fofana B, et al. Pyronaridine–artesunate or dihydroartemisinin–piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet. 2018;391:1378–90.CrossRef Sagara I, Habib Beavogui A, Zongo I, Soulama I, Borghini-Fuhrer I, Fofana B, et al. Pyronaridine–artesunate or dihydroartemisinin–piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet. 2018;391:1378–90.CrossRef
18.
go back to reference Camara A, Moriarty LF, Guilavogui T, Diakité PS, Zoumanigui JS, Sidibé S, et al. Prescriber practices and patient adherence to artemisinin-based combination therapy for the treatment of uncomplicated malaria in Guinea, 2016. Malar J. 2019;18:23.CrossRef Camara A, Moriarty LF, Guilavogui T, Diakité PS, Zoumanigui JS, Sidibé S, et al. Prescriber practices and patient adherence to artemisinin-based combination therapy for the treatment of uncomplicated malaria in Guinea, 2016. Malar J. 2019;18:23.CrossRef
21.
go back to reference Ministère de la Santé, Programme National de Lutte contre le Paludisme. Plan stratégique national de lutte contre le paludisme 2013–2017. Guinee; 2014 http://pnlp-guinee.org/. Ministère de la Santé, Programme National de Lutte contre le Paludisme. Plan stratégique national de lutte contre le paludisme 2013–2017. Guinee; 2014 http://​pnlp-guinee.​org/​.
23.
go back to reference Mahajan SS, Kamath VR, Ghatpande SS. Synergistic antimalarial activity of ketones with rufigallol and vitamin C. Parasitology. 2005;131:459.CrossRef Mahajan SS, Kamath VR, Ghatpande SS. Synergistic antimalarial activity of ketones with rufigallol and vitamin C. Parasitology. 2005;131:459.CrossRef
24.
go back to reference Chemaly SM, Chen CT, van Zyl RL. Naturally occurring cobalamins have antimalarial activity. J Inorg Biochem. 2007;101:764–73.CrossRef Chemaly SM, Chen CT, van Zyl RL. Naturally occurring cobalamins have antimalarial activity. J Inorg Biochem. 2007;101:764–73.CrossRef
25.
go back to reference Samal D, Rojanawatsirivet C, Wernsdorfer G, Kollaritsch H, Sirichaisinthop J, Wernsdorfer WH. Synergism of desbutyl–benflumetol and retinol against Plasmodium falciparum in vitro. Wien Klin Wochenschr. 2005;117:39–44.CrossRef Samal D, Rojanawatsirivet C, Wernsdorfer G, Kollaritsch H, Sirichaisinthop J, Wernsdorfer WH. Synergism of desbutyl–benflumetol and retinol against Plasmodium falciparum in vitro. Wien Klin Wochenschr. 2005;117:39–44.CrossRef
26.
go back to reference Serghides L, Kain KC. Mechanism of protection induced by vitamin A in falciparum malaria. Lancet. 2002;359:1404–6.CrossRef Serghides L, Kain KC. Mechanism of protection induced by vitamin A in falciparum malaria. Lancet. 2002;359:1404–6.CrossRef
27.
go back to reference Talib VH, Hasija BD, Diwan VM, Verma MC. A clinico-haematological profile of malaria. J Assoc Physicians India. 1982;30:402–4.PubMed Talib VH, Hasija BD, Diwan VM, Verma MC. A clinico-haematological profile of malaria. J Assoc Physicians India. 1982;30:402–4.PubMed
28.
go back to reference Ghalaut PS, Atri K, Gaur N, Jain S, Chahal A, Pahuja I, et al. To study the clinical profile and etiological spectrum of patients with splenomegaly in a tertiary care centre of North India. Int J Sci Res Publ. 2016;6:120. Ghalaut PS, Atri K, Gaur N, Jain S, Chahal A, Pahuja I, et al. To study the clinical profile and etiological spectrum of patients with splenomegaly in a tertiary care centre of North India. Int J Sci Res Publ. 2016;6:120.
29.
go back to reference Plucinski MM, Morton L, Bushman M, Dimbu PR, Udhayakumar V. Robust algorithm for systematic classification of malaria late treatment failures as recrudescence or reinfection using microsatellite genotyping. Antimicrob Agents Chemother. 2015;59:6096–100.CrossRef Plucinski MM, Morton L, Bushman M, Dimbu PR, Udhayakumar V. Robust algorithm for systematic classification of malaria late treatment failures as recrudescence or reinfection using microsatellite genotyping. Antimicrob Agents Chemother. 2015;59:6096–100.CrossRef
30.
go back to reference Ljolje D, Dimbu PR, Kelley J, Goldman I, Nace D, Macaia A, et al. Prevalence of molecular markers of artemisinin and lumefantrine resistance among patients with uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2015. Malar J. 2018;17:84.CrossRef Ljolje D, Dimbu PR, Kelley J, Goldman I, Nace D, Macaia A, et al. Prevalence of molecular markers of artemisinin and lumefantrine resistance among patients with uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2015. Malar J. 2018;17:84.CrossRef
31.
go back to reference Halsey ES, Venkatesan M, Plucinski MM, Talundzic E, Lucchi NW, Zhou Z, et al. Capacity development through the US President’s malaria initiative–supported antimalarial resistance monitoring in Africa network. Emerg Infect Dis. 2017;23:S53–6.CrossRef Halsey ES, Venkatesan M, Plucinski MM, Talundzic E, Lucchi NW, Zhou Z, et al. Capacity development through the US President’s malaria initiative–supported antimalarial resistance monitoring in Africa network. Emerg Infect Dis. 2017;23:S53–6.CrossRef
32.
go back to reference Mwaiswelo R, Ngasala B, Gil JP, Malmberg M, Jovel I, Xu W, et al. Sustained high cure rate of artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria after 8 years of its wide-scale use in Bagamoyo District, Tanzania. Am J Trop Med Hyg. 2017;97:526–32.CrossRef Mwaiswelo R, Ngasala B, Gil JP, Malmberg M, Jovel I, Xu W, et al. Sustained high cure rate of artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria after 8 years of its wide-scale use in Bagamoyo District, Tanzania. Am J Trop Med Hyg. 2017;97:526–32.CrossRef
33.
go back to reference Teklemariam M, Assefa A, Kassa M, Mohammed H, Mamo H. Therapeutic efficacy of artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria in a high-transmission area in northwest Ethiopia. PLoS ONE. 2017;12:e0176004.CrossRef Teklemariam M, Assefa A, Kassa M, Mohammed H, Mamo H. Therapeutic efficacy of artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria in a high-transmission area in northwest Ethiopia. PLoS ONE. 2017;12:e0176004.CrossRef
35.
go back to reference Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19:e338–51.CrossRef Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19:e338–51.CrossRef
36.
go back to reference Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-Isavadharm P, Smith B, et al. Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis. 2010;51:e82–9.CrossRef Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-Isavadharm P, Smith B, et al. Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis. 2010;51:e82–9.CrossRef
37.
go back to reference Djimdé A, Lefèvre G. Understanding the pharmacokinetics of Coartem®. Malar J. 2009;8(Suppl. 1):S4.CrossRef Djimdé A, Lefèvre G. Understanding the pharmacokinetics of Coartem®. Malar J. 2009;8(Suppl. 1):S4.CrossRef
38.
go back to reference White NJ. Preventing antimalarial drug resistance through combinations. Drug Resist Updat. 1998;1:3–9.CrossRef White NJ. Preventing antimalarial drug resistance through combinations. Drug Resist Updat. 1998;1:3–9.CrossRef
39.
go back to reference Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-saharan Africa. J Infect Dis. 2015;211:1352–5.PubMed Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-saharan Africa. J Infect Dis. 2015;211:1352–5.PubMed
40.
go back to reference Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374:2453–64.CrossRef Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374:2453–64.CrossRef
41.
go back to reference Mayengue PI, Niama RF, Kouhounina Batsimba D, Malonga-Massanga A, Louzolo I, Loukabou Bongolo NC, et al. No polymorphisms in K13-propeller gene associated with artemisinin resistance in Plasmodium falciparum isolated from Brazzaville, Republic of Congo. BMC Infect Dis. 2018;18:538.CrossRef Mayengue PI, Niama RF, Kouhounina Batsimba D, Malonga-Massanga A, Louzolo I, Loukabou Bongolo NC, et al. No polymorphisms in K13-propeller gene associated with artemisinin resistance in Plasmodium falciparum isolated from Brazzaville, Republic of Congo. BMC Infect Dis. 2018;18:538.CrossRef
42.
go back to reference Ogouyèmi-Hounto A, Damien G, Deme AB, Ndam NT, Assohou C, Tchonlin D, et al. Lack of artemisinin resistance in Plasmodium falciparum in northwest Benin after 10 years of use of artemisinin-based combination therapy. Parasite. 2016;23:28.CrossRef Ogouyèmi-Hounto A, Damien G, Deme AB, Ndam NT, Assohou C, Tchonlin D, et al. Lack of artemisinin resistance in Plasmodium falciparum in northwest Benin after 10 years of use of artemisinin-based combination therapy. Parasite. 2016;23:28.CrossRef
43.
go back to reference Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.CrossRef Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.CrossRef
44.
go back to reference Talundzic E, Okoth SA, Congpuong K, Plucinski MM, Morton L, Goldman IF, et al. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog. 2015;11:e1004789.CrossRef Talundzic E, Okoth SA, Congpuong K, Plucinski MM, Morton L, Goldman IF, et al. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog. 2015;11:e1004789.CrossRef
46.
go back to reference Otienoburu SD, Maïga-Ascofaré O, Schramm B, Jullien V, Jones JJ, Zolia YM, et al. Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate–amodiaquine fixed dose combination or artemether–lumefantrine in Liberia. Malar J. 2016;15:452.CrossRef Otienoburu SD, Maïga-Ascofaré O, Schramm B, Jullien V, Jones JJ, Zolia YM, et al. Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate–amodiaquine fixed dose combination or artemether–lumefantrine in Liberia. Malar J. 2016;15:452.CrossRef
47.
go back to reference Happi CT, Gbotosho GO, Folarin OA, Sowunmi A, Hudson T, O’Neil M, et al. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether–lumefantrine in nigerian children with uncomplicated falciparum malaria. Antimicrob Agents Chemother. 2009;53:888–95.CrossRef Happi CT, Gbotosho GO, Folarin OA, Sowunmi A, Hudson T, O’Neil M, et al. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether–lumefantrine in nigerian children with uncomplicated falciparum malaria. Antimicrob Agents Chemother. 2009;53:888–95.CrossRef
Metadata
Title
Efficacy and safety of artesunate–amodiaquine and artemether–lumefantrine and prevalence of molecular markers associated with resistance, Guinea: an open-label two-arm randomised controlled trial
Authors
Abdoul Habib Beavogui
Alioune Camara
Alexandre Delamou
Mamadou Saliou Diallo
Abdoulaye Doumbouya
Karifa Kourouma
Patrice Bouedouno
Timothée Guilavogui
Samaly dos Santos Souza
Julia Kelley
Eldin Talundzic
Aissata Fofana
Mateusz M. Plucinski
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03290-w

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue