Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

Cost of community-led larval source management and house improvement for malaria control: a cost analysis within a cluster-randomized trial in a rural district in Malawi

Authors: Mphatso Dennis Phiri, Robert S. McCann, Alinune Nathanael Kabaghe, Henk van den Berg, Tumaini Malenga, Steven Gowelo, Tinashe Tizifa, Willem Takken, Michèle van Vugt, Kamija S. Phiri, Dianne J. Terlouw, Eve Worrall

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

House improvement (HI) to prevent mosquito house entry, and larval source management (LSM) targeting aquatic mosquito stages to prevent development into adult forms, are promising complementary interventions to current malaria vector control strategies. Lack of evidence on costs and cost-effectiveness of community-led implementation of HI and LSM has hindered wide-scale adoption. This study presents an incremental cost analysis of community-led implementation of HI and LSM, in a cluster-randomized, factorial design trial, in addition to standard national malaria control interventions in a rural area (25,000 people), in southern Malawi.

Methods

In the trial, LSM comprised draining, filling, and Bacillus thuringiensis israelensis-based larviciding, while house improvement (henceforth HI) involved closing of eaves and gaps on walls, screening windows/ventilation spaces with wire mesh, and doorway modifications. Communities implemented all interventions. Costs were estimated retrospectively using the ‘ingredients approach’, combining ‘bottom-up’ and ‘top-down approaches’, from the societal perspective. To estimate the cost of independently implementing each intervention arm, resources shared between trial arms (e.g. overheads) were allocated to each consuming arm using proxies developed based on share of resource input quantities consumed. Incremental implementation costs (in 2017 US$) are presented for HI-only, LSM-only and HI + LSM arms. In sensitivity analyses, the effect of varying costs of important inputs on estimated costs was explored.

Results

The total economic programme costs of community-led HI and LSM implementation was $626,152. Incremental economic implementation costs of HI, LSM and HI + LSM were estimated as $27.04, $25.06 and $33.44, per person per year, respectively. Project staff, transport and labour costs, but not larvicide or screening material, were the major cost drivers across all interventions. Costs were sensitive to changes in staff costs and population covered.

Conclusions

In the trial, the incremental economic costs of community-led HI and LSM implementation were high compared to previous house improvement and LSM studies. Several factors, including intervention design, year-round LSM implementation and low human population density could explain the high costs. The factorial trial design necessitated use of proxies to allocate costs shared between trial arms, which limits generalizability where different designs are used. Nevertheless, costs may inform planners of similar intervention packages where cost-effectiveness is known.
Trial registration Not applicable. The original trial was registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015. WHO. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015.
2.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.PubMedPubMedCentralCrossRef Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.PubMedPubMedCentralCrossRef
3.
go back to reference WHO. World malaria report 2015. Geneva: World Health Organization; 2015. WHO. World malaria report 2015. Geneva: World Health Organization; 2015.
4.
go back to reference WHO. World malaria report 2017. Geneva: World Health Organization; 2017. WHO. World malaria report 2017. Geneva: World Health Organization; 2017.
5.
go back to reference Williams YA, Tusting LS, Hocini S, Graves PM, Killeen GF, Kleinschmidt I, et al. Expanding the vector control toolbox for malaria elimination: a systematic review of the evidence. Adv Parasitol. 2018;99:345–79.PubMedCrossRef Williams YA, Tusting LS, Hocini S, Graves PM, Killeen GF, Kleinschmidt I, et al. Expanding the vector control toolbox for malaria elimination: a systematic review of the evidence. Adv Parasitol. 2018;99:345–79.PubMedCrossRef
6.
go back to reference Fillinger U, Kannady K, William G, Vanek MJ, Dongus S, Nyika D, et al. A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam, Tanzania. Malar J. 2008;7:20.PubMedPubMedCentralCrossRef Fillinger U, Kannady K, William G, Vanek MJ, Dongus S, Nyika D, et al. A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam, Tanzania. Malar J. 2008;7:20.PubMedPubMedCentralCrossRef
7.
go back to reference Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.PubMedPubMedCentralCrossRef Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.PubMedPubMedCentralCrossRef
9.
go back to reference Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev. 2013;8:CD008923. Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev. 2013;8:CD008923.
11.
go back to reference Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GELL, Emerson PM. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health. 2003;8:512–7.PubMedCrossRef Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GELL, Emerson PM. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health. 2003;8:512–7.PubMedCrossRef
12.
go back to reference Utzinger JJ, Tozan Y, Singer BH. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001;6:677–87.PubMedCrossRef Utzinger JJ, Tozan Y, Singer BH. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001;6:677–87.PubMedCrossRef
13.
go back to reference WHO. Larval source management: a supplementary measure for malaria control: an operational manual. Geneva: World Health Organization; 2013. WHO. Larval source management: a supplementary measure for malaria control: an operational manual. Geneva: World Health Organization; 2013.
14.
15.
go back to reference Dambach P, Schleicher M, Stahl HC, Traoré I, Becker N, Kaiser A, et al. Routine implementation costs of larviciding with Bacillus thuringiensis israelensis against malaria vectors in a district in rural Burkina Faso. Malar J. 2016;15:380.PubMedPubMedCentralCrossRef Dambach P, Schleicher M, Stahl HC, Traoré I, Becker N, Kaiser A, et al. Routine implementation costs of larviciding with Bacillus thuringiensis israelensis against malaria vectors in a district in rural Burkina Faso. Malar J. 2016;15:380.PubMedPubMedCentralCrossRef
17.
go back to reference Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.PubMedPubMedCentralCrossRef Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.PubMedPubMedCentralCrossRef
18.
go back to reference Tusting LS, Bottomley C, Gibson H, Kleinschmidt I, Tatem AJ, Lindsay SW, et al. Housing improvements and malaria risk in sub-Saharan Africa: a multi-country analysis of survey data. PLoS Med. 2017;14:e1002234.PubMedPubMedCentralCrossRef Tusting LS, Bottomley C, Gibson H, Kleinschmidt I, Tatem AJ, Lindsay SW, et al. Housing improvements and malaria risk in sub-Saharan Africa: a multi-country analysis of survey data. PLoS Med. 2017;14:e1002234.PubMedPubMedCentralCrossRef
19.
go back to reference Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.PubMedPubMedCentralCrossRef Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.PubMedPubMedCentralCrossRef
20.
go back to reference Furnival-Adams J, Olanga EA, Napier M, Garner P. House modifications for preventing malaria. Cochrane Database Syst Rev. 2020;10:CD013398.PubMed Furnival-Adams J, Olanga EA, Napier M, Garner P. House modifications for preventing malaria. Cochrane Database Syst Rev. 2020;10:CD013398.PubMed
21.
go back to reference Massebo F, Lindtjørn B. The effect of screening doors and windows on indoor density of Anopheles arabiensis in south-west Ethiopia: a randomized trial. Malar J. 2013;12:319.PubMedPubMedCentralCrossRef Massebo F, Lindtjørn B. The effect of screening doors and windows on indoor density of Anopheles arabiensis in south-west Ethiopia: a randomized trial. Malar J. 2013;12:319.PubMedPubMedCentralCrossRef
22.
go back to reference Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW, O’Brien B, et al. Methods for the economic evaluation of health care programmes. 4th ed. Oxford: Oxford University Press; 2015. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW, O’Brien B, et al. Methods for the economic evaluation of health care programmes. 4th ed. Oxford: Oxford University Press; 2015.
23.
go back to reference McCann RS, van den Berg H, Diggle PJ, van Vugt M, Terlouw DJ, Phiri KS, et al. Assessment of the effect of larval source management and house improvement on malaria transmission when added to standard malaria control strategies in southern Malawi: study protocol for a cluster-randomised controlled trial. BMC Infect Dis. 2017;17:639.PubMedPubMedCentralCrossRef McCann RS, van den Berg H, Diggle PJ, van Vugt M, Terlouw DJ, Phiri KS, et al. Assessment of the effect of larval source management and house improvement on malaria transmission when added to standard malaria control strategies in southern Malawi: study protocol for a cluster-randomised controlled trial. BMC Infect Dis. 2017;17:639.PubMedPubMedCentralCrossRef
24.
go back to reference McCann RS, Kabaghe AN, Moraga P, Gowelo S, Mburu MM, Tizifa T, et al. The effect of community-driven larval source management and house improvement on malaria transmission when added to the standard malaria control strategies in Malawi: a cluster-randomized controlled trial. Malar J. 2021;20:232.PubMedPubMedCentralCrossRef McCann RS, Kabaghe AN, Moraga P, Gowelo S, Mburu MM, Tizifa T, et al. The effect of community-driven larval source management and house improvement on malaria transmission when added to the standard malaria control strategies in Malawi: a cluster-randomized controlled trial. Malar J. 2021;20:232.PubMedPubMedCentralCrossRef
25.
go back to reference Malenga T, Kabaghe AN, Manda-Taylor L, Kadama A, Mccann RS, Phiri KS, et al. Malaria control in rural Malawi: implementing peer health education for behaviour change. Glob Health. 2017;13:84.CrossRef Malenga T, Kabaghe AN, Manda-Taylor L, Kadama A, Mccann RS, Phiri KS, et al. Malaria control in rural Malawi: implementing peer health education for behaviour change. Glob Health. 2017;13:84.CrossRef
26.
go back to reference Malawi Government Ministry of Health National Malaria Control Programme. Malaria strategic plan 2017–2022. Lilongwe; 2017. Malawi Government Ministry of Health National Malaria Control Programme. Malaria strategic plan 2017–2022. Lilongwe; 2017.
27.
go back to reference Spiers AA, Mzilahowa T, Atkinson D, McCall PJ. The malaria vectors of the Lower Shire valley, Malawi. Malawi Med J. 2002;14:4–7.PubMedPubMedCentral Spiers AA, Mzilahowa T, Atkinson D, McCall PJ. The malaria vectors of the Lower Shire valley, Malawi. Malawi Med J. 2002;14:4–7.PubMedPubMedCentral
28.
go back to reference Van Den Berg H, Van Vugt M, Kabaghe AN, Nkalapa M, Kaotcha R, Truwah Z, et al. Community-based malaria control in southern Malawi: a description of experimental interventions of community workshops, house improvement and larval source management. Malar J. 2018;17:266.PubMedPubMedCentralCrossRef Van Den Berg H, Van Vugt M, Kabaghe AN, Nkalapa M, Kaotcha R, Truwah Z, et al. Community-based malaria control in southern Malawi: a description of experimental interventions of community workshops, house improvement and larval source management. Malar J. 2018;17:266.PubMedPubMedCentralCrossRef
30.
go back to reference Cunnama L, Sinanovic E, Ramma L, Foster N, Berrie L, Stevens W, et al. Using top-down and bottom-up costing approaches in LMICs: the case for using both to assess the incremental costs of new technologies at scale. Health Econ. 2016;25(Suppl 1):53–66.PubMedPubMedCentralCrossRef Cunnama L, Sinanovic E, Ramma L, Foster N, Berrie L, Stevens W, et al. Using top-down and bottom-up costing approaches in LMICs: the case for using both to assess the incremental costs of new technologies at scale. Health Econ. 2016;25(Suppl 1):53–66.PubMedPubMedCentralCrossRef
31.
go back to reference World Health Organization, Phillips M, Mills AJ, Dye C. Guidelines for cost-effectiveness analysis of vector control. Geneva: World Health Organization; 1993. World Health Organization, Phillips M, Mills AJ, Dye C. Guidelines for cost-effectiveness analysis of vector control. Geneva: World Health Organization; 1993.
32.
go back to reference Turner HC, Lauer JA, Tran BX, Teerawattananon Y, Jit M. Adjusting for inflation and currency changes within health economic studies. Value Health. 2019;22:1026–32.PubMedCrossRef Turner HC, Lauer JA, Tran BX, Teerawattananon Y, Jit M. Adjusting for inflation and currency changes within health economic studies. Value Health. 2019;22:1026–32.PubMedCrossRef
33.
34.
go back to reference Choi L, Majambere S, Wilson AL. Larviciding to prevent malaria transmission. Cochrane Database Syst Rev. 2019;8:CD012736.PubMed Choi L, Majambere S, Wilson AL. Larviciding to prevent malaria transmission. Cochrane Database Syst Rev. 2019;8:CD012736.PubMed
35.
go back to reference Malawi National Statistical Office (NSO). 2018 Malawi population and housing main report. Zomba; 2019. Malawi National Statistical Office (NSO). 2018 Malawi population and housing main report. Zomba; 2019.
36.
go back to reference Edejer ETT, Baltussen R, Adam T, Hutubessy R. WHO guide to making choices in health. Geneva: World Health Organization; 2003. Edejer ETT, Baltussen R, Adam T, Hutubessy R. WHO guide to making choices in health. Geneva: World Health Organization; 2003.
37.
go back to reference Whittaker M, Smith C. Reimagining malaria: five reasons to strengthen community engagement in the lead up to malaria elimination. Malar J. 2015;14:410.PubMedPubMedCentralCrossRef Whittaker M, Smith C. Reimagining malaria: five reasons to strengthen community engagement in the lead up to malaria elimination. Malar J. 2015;14:410.PubMedPubMedCentralCrossRef
38.
go back to reference Atkinson JA, Vallely A, Fitzgerald L, Whittaker M, Tanner M. The architecture and effect of participation: a systematic review of community participation for communicable disease control and elimination. Implications for malaria elimination. Malar J. 2011;10:225.PubMedPubMedCentralCrossRef Atkinson JA, Vallely A, Fitzgerald L, Whittaker M, Tanner M. The architecture and effect of participation: a systematic review of community participation for communicable disease control and elimination. Implications for malaria elimination. Malar J. 2011;10:225.PubMedPubMedCentralCrossRef
39.
go back to reference Baltzell K, Harvard K, Hanley M, Gosling R, Chen I. What is community engagement and how can it drive malaria elimination? Case studies and stakeholder interviews. Malar J. 2019;18:245.PubMedPubMedCentralCrossRef Baltzell K, Harvard K, Hanley M, Gosling R, Chen I. What is community engagement and how can it drive malaria elimination? Case studies and stakeholder interviews. Malar J. 2019;18:245.PubMedPubMedCentralCrossRef
40.
go back to reference Wisniewski J, Acosta A, Kolaczinski J, Koenker H, Yukich J. Systematic review and meta-analysis of the cost and cost-effectiveness of distributing insecticide-treated nets for the prevention of malaria. Acta Trop. 2020;202:105229.PubMedCrossRef Wisniewski J, Acosta A, Kolaczinski J, Koenker H, Yukich J. Systematic review and meta-analysis of the cost and cost-effectiveness of distributing insecticide-treated nets for the prevention of malaria. Acta Trop. 2020;202:105229.PubMedCrossRef
41.
go back to reference Abbott M, Johns B. PMI IRS country programs: comparative cost analysis, August 11, 2011–December 31, 2012. Bethesda; 2013. (Africa Indoor Residual Spraying (AIRS) Project, Abt Associates Inc.). Abbott M, Johns B. PMI IRS country programs: comparative cost analysis, August 11, 2011–December 31, 2012. Bethesda; 2013. (Africa Indoor Residual Spraying (AIRS) Project, Abt Associates Inc.).
42.
go back to reference Kirby MJ, Bah P, Jones COH, Kelly AH, Jasseh M, Lindsay SW. Social acceptability and durability of two different house screening interventions against exposure to malaria vectors, Plasmodium falciparum infection, and anemia in children in The Gambia, West Africa. Am J Trop Med Hyg. 2010;83:965–72.PubMedPubMedCentralCrossRef Kirby MJ, Bah P, Jones COH, Kelly AH, Jasseh M, Lindsay SW. Social acceptability and durability of two different house screening interventions against exposure to malaria vectors, Plasmodium falciparum infection, and anemia in children in The Gambia, West Africa. Am J Trop Med Hyg. 2010;83:965–72.PubMedPubMedCentralCrossRef
43.
go back to reference Tesfazghi K, Hill J, Jones C, Ranson H, Worrall E. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria. Health Policy Plan. 2016;31:91–101.PubMedCrossRef Tesfazghi K, Hill J, Jones C, Ranson H, Worrall E. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria. Health Policy Plan. 2016;31:91–101.PubMedCrossRef
44.
go back to reference Mangham-Jefferies L, Wiseman V, Achonduh OA, Drake TL, Cundill B, Onwujekwe O, et al. Economic evaluation of a cluster randomized trial of interventions to improve health workers’ practice in diagnosing and treating uncomplicated malaria in cameroon. Value Health. 2014;17:783–91.PubMedCrossRef Mangham-Jefferies L, Wiseman V, Achonduh OA, Drake TL, Cundill B, Onwujekwe O, et al. Economic evaluation of a cluster randomized trial of interventions to improve health workers’ practice in diagnosing and treating uncomplicated malaria in cameroon. Value Health. 2014;17:783–91.PubMedCrossRef
45.
46.
go back to reference Kabaghe AN, Chipeta MG, McCann RS, Phiri KS, Van Vugt M, Takken W, et al. Adaptive geostatistical sampling enables efficient identification of malaria hotspots in repeated cross-sectional surveys in rural Malawi. PLoS ONE. 2017;12:e0172266.PubMedPubMedCentralCrossRef Kabaghe AN, Chipeta MG, McCann RS, Phiri KS, Van Vugt M, Takken W, et al. Adaptive geostatistical sampling enables efficient identification of malaria hotspots in repeated cross-sectional surveys in rural Malawi. PLoS ONE. 2017;12:e0172266.PubMedPubMedCentralCrossRef
Metadata
Title
Cost of community-led larval source management and house improvement for malaria control: a cost analysis within a cluster-randomized trial in a rural district in Malawi
Authors
Mphatso Dennis Phiri
Robert S. McCann
Alinune Nathanael Kabaghe
Henk van den Berg
Tumaini Malenga
Steven Gowelo
Tinashe Tizifa
Willem Takken
Michèle van Vugt
Kamija S. Phiri
Dianne J. Terlouw
Eve Worrall
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03800-4

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine