Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Plasmodium Falciparum | Methodology

Improved Plasmodium falciparum dilution cloning through efficient quantification of parasite numbers and c-SNARF detection

Authors: Tatiane Macedo-Silva, Sanjay A. Desai, Gerhard Wunderlich

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Molecular and genetic studies of blood-stage Plasmodium falciparum parasites require limiting dilution cloning and prolonged cultivation in microplates. The entire process is laborious and subject to errors due to inaccurate dilutions at the onset and failed detection of parasite growth in individual microplate wells.

Methods

To precisely control the number of parasites dispensed into each microplate well, parasitaemia and total cell counts were determined by flow cytometry using parasite cultures stained with ethidium bromide or SYBR Green I. Microplates were seeded with 0.2 or 0.3 infected cells/well and cultivated with fresh erythrocytes. The c-SNARF fluorescent pH indicator was then used to reliably detect parasite growth.

Results

Flow cytometry required less time than the traditional approach of estimating parasitaemia and cell numbers by microscopic examination. The resulting dilutions matched predictions from Poisson distribution calculations and yielded clonal lines. Addition of c-SNARF to media permitted rapid detection of parasite growth in microplate wells with high confidence.

Conclusion

The combined use of flow cytometry for precise dilution and the c-SNARF method for detection of growth improves limiting dilution cloning of P. falciparum. This simple approach saves time, is scalable, and maximizes identification of desired parasite clones. It will facilitate DNA transfection studies and isolation of parasite clones from ex vivo blood samples.
Literature
1.
go back to reference WHO. World Malaria Report 2019. Geneva: World Health Organization; 2019. WHO. World Malaria Report 2019. Geneva: World Health Organization; 2019.
2.
go back to reference Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.CrossRef Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.CrossRef
3.
go back to reference Maier AG, Rug M. In vitro culturing Plasmodium falciparum erythrocytic stages. Methods Mol Biol. 2013;923:3–15.CrossRef Maier AG, Rug M. In vitro culturing Plasmodium falciparum erythrocytic stages. Methods Mol Biol. 2013;923:3–15.CrossRef
4.
go back to reference Wu Y, Sifri CD, Lei H-H, Su X-Z, Wellems TE. Transfection of Plasmodium falciparum within human red blood cells (malaria/chloramphenicol acetyltransferase/gene expression/codon usage). Proc Natl Acad Sci USA. 1995;92:973–7.CrossRef Wu Y, Sifri CD, Lei H-H, Su X-Z, Wellems TE. Transfection of Plasmodium falciparum within human red blood cells (malaria/chloramphenicol acetyltransferase/gene expression/codon usage). Proc Natl Acad Sci USA. 1995;92:973–7.CrossRef
5.
go back to reference Armstrong CM, Goldberg DE. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat Methods. 2007;4:1007–9.CrossRef Armstrong CM, Goldberg DE. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat Methods. 2007;4:1007–9.CrossRef
6.
go back to reference Prommana P, Uthaipibull C, Wongsombat C, Kamchonwongpaisan S, Yuthavong Y, Knuepfer E, et al. Inducible knockdown of Plasmodium gene expression using the glmS ribozyme. PLoS One. 2013;8:e73783.CrossRef Prommana P, Uthaipibull C, Wongsombat C, Kamchonwongpaisan S, Yuthavong Y, Knuepfer E, et al. Inducible knockdown of Plasmodium gene expression using the glmS ribozyme. PLoS One. 2013;8:e73783.CrossRef
7.
go back to reference Birnbaum J, Flemming S, Reichard N, Soares AB, Mesén-Ramírez P, Jonscher E, et al. A genetic system to study Plasmodium falciparum protein function. Nat Methods. 2017;14:450–6.CrossRef Birnbaum J, Flemming S, Reichard N, Soares AB, Mesén-Ramírez P, Jonscher E, et al. A genetic system to study Plasmodium falciparum protein function. Nat Methods. 2017;14:450–6.CrossRef
8.
go back to reference Ganesan SM, Falla A, Goldfless SJ, Nasamu AS, Niles JC. Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites. Nat Commun. 2016;7:10727.CrossRef Ganesan SM, Falla A, Goldfless SJ, Nasamu AS, Niles JC. Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites. Nat Commun. 2016;7:10727.CrossRef
9.
go back to reference Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio J-J. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol. 2014;32:819–21.CrossRef Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio J-J. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol. 2014;32:819–21.CrossRef
10.
go back to reference Rosario V. Cloning of naturally occurring mixed infections of malaria parasites. Science. 1981;212:1037–8.CrossRef Rosario V. Cloning of naturally occurring mixed infections of malaria parasites. Science. 1981;212:1037–8.CrossRef
11.
go back to reference Lyko B, Hammershaimb EA, Nguitragool W, Wellems TE, Desai SA. A high-throughput method to detect Plasmodium falciparum clones in limiting dilution microplates. Malar J. 2012;11:124.CrossRef Lyko B, Hammershaimb EA, Nguitragool W, Wellems TE, Desai SA. A high-throughput method to detect Plasmodium falciparum clones in limiting dilution microplates. Malar J. 2012;11:124.CrossRef
12.
go back to reference Hasenkamp S, Russell KT, Horrocks P. Comparison of the absolute and relative efficiencies of electroporation-based transfection protocols for Plasmodium falciparum. Malar J. 2012;11:210.CrossRef Hasenkamp S, Russell KT, Horrocks P. Comparison of the absolute and relative efficiencies of electroporation-based transfection protocols for Plasmodium falciparum. Malar J. 2012;11:210.CrossRef
13.
go back to reference Grimberg BT. Methodology and application of flow cytometry for investigation of human malaria parasites. J Immunol Methods. 2011;367:1–16.CrossRef Grimberg BT. Methodology and application of flow cytometry for investigation of human malaria parasites. J Immunol Methods. 2011;367:1–16.CrossRef
14.
go back to reference Izumiyama S, Omura M, Takasaki T, Ohmae H, Asahi H. Plasmodium falciparum: development and validation of a measure of intraerythrocytic growth using SYBR Green I in a flow cytometer. Exp Parasitol. 2009;121:144–50.CrossRef Izumiyama S, Omura M, Takasaki T, Ohmae H, Asahi H. Plasmodium falciparum: development and validation of a measure of intraerythrocytic growth using SYBR Green I in a flow cytometer. Exp Parasitol. 2009;121:144–50.CrossRef
Metadata
Title
Improved Plasmodium falciparum dilution cloning through efficient quantification of parasite numbers and c-SNARF detection
Authors
Tatiane Macedo-Silva
Sanjay A. Desai
Gerhard Wunderlich
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03816-w

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.