Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

Reactive, self-administered malaria treatment against asymptomatic malaria infection: results of a cluster randomized controlled trial in The Gambia

Authors: Joseph Okebe, Edgard Dabira, Fatou Jaiteh, Nuredin Mohammed, John Bradley, Ndey-Fatou Drammeh, Amadou Bah, Yoriko Masunaga, Jane Achan, Joan Muela Ribera, Shunmay Yeung, Julie Balen, Koen Peeters Grietens, Umberto D’Alessandro

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Selectively targeting and treating malaria-infected individuals may further decrease parasite carriage in low-burden settings. Using a trans-disciplinary approach, a reactive treatment strategy to reduce Plasmodium falciparum prevalence in participating communities was co-developed and tested.

Methods

This is a 2-arm, open-label, cluster-randomized trial involving villages in Central Gambia during the 2017 and 2018 malaria transmission season. Villages were randomized in a 1:1 ratio using a minimizing algorithm. In the intervention arm, trained village health workers delivered a full course of pre-packed dihydroartemisinin-piperaquine to all residents of compounds where clinical cases were reported while in the control arm, compound residents were screened for infection at the time of the index case reporting. All index cases were treated following national guidelines. The primary endpoint was malaria prevalence, determined by molecular methods, at the end of the intervention period.

Results

The trial was carried out in 50 villages: 34 in 2017 and 16 additional villages in 2018. At the end of the 2018 transmission season, malaria prevalence was 0.8% (16/1924, range 0–4%) and 1.1% (20/1814, range 0–17%) in the intervention and control arms, respectively. The odds of malaria infection were 29% lower in the intervention than in the control arm after adjustment for age (OR 0.71, 95% CI 0.27–1.84, p = 0.48). Adherence to treatment was high, with 98% (964/979) of those treated completing the 3-day treatment.
Over the course of the study, only 37 villages, 20 in the intervention and 17 in the control arm, reported at least one clinical case. The distribution of clinical cases by month in both transmission seasons was similar and the odds of new clinical malaria cases during the trial period did not vary between arms (OR 1.04, 95% CI 0.57–1.91, p = 0.893). All adverse events were classified as mild to moderate and resolved completely.

Conclusion

The systematic and timely administration of an anti-malarial treatment to residents of compounds with confirmed malaria cases did not significantly decrease malaria prevalence and incidence in communities where malaria prevalence was already low. Treatment coverage and adherence was very high. Results were strongly influenced by the lower-than-expected malaria prevalence, and by no clinical cases in villages with asymptomatic malaria-infected individuals.
Trial registration: This study is registered with ClinicalTrials.gov, NCT02878200. Registered 25 August 2016. https://​clinicaltrials.​gov/​ct2/​show/​NCT02878200.
Literature
1.
go back to reference Zhou G, Afrane YA, Malla S, Githeko AK, Yan G. Active case surveillance, passive case surveillance and asymptomatic malaria parasite screening illustrate different age distribution, spatial clustering and seasonality in western Kenya. Malar J. 2015;14:41.CrossRef Zhou G, Afrane YA, Malla S, Githeko AK, Yan G. Active case surveillance, passive case surveillance and asymptomatic malaria parasite screening illustrate different age distribution, spatial clustering and seasonality in western Kenya. Malar J. 2015;14:41.CrossRef
2.
go back to reference Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti Infect Ther. 2013;11:623–39.CrossRef Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti Infect Ther. 2013;11:623–39.CrossRef
3.
go back to reference Smith JL, Auala J, Tambo M, Haindongo E, Katokele S, Uusiku P, et al. Spatial clustering of patent and sub-patent malaria infections in northern Namibia: implications for surveillance and response strategies for elimination. PLoS ONE. 2017;12:e0180845.CrossRef Smith JL, Auala J, Tambo M, Haindongo E, Katokele S, Uusiku P, et al. Spatial clustering of patent and sub-patent malaria infections in northern Namibia: implications for surveillance and response strategies for elimination. PLoS ONE. 2017;12:e0180845.CrossRef
4.
go back to reference WHO. The role of mass drug administration, mass screening and treatment, and focal screening and treatment for malaria. Geneva:World Health Organization; 2015. WHO. The role of mass drug administration, mass screening and treatment, and focal screening and treatment for malaria. Geneva:World Health Organization; 2015.
5.
go back to reference Webster JP, Molyneux DH, Hotez PJ, Fenwick A. The contribution of mass drug administration to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130434.CrossRef Webster JP, Molyneux DH, Hotez PJ, Fenwick A. The contribution of mass drug administration to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130434.CrossRef
6.
go back to reference Newby G, Hwang J, Koita K, Chen I, Greenwood B, von Seidlein L, et al. Review of mass drug administration for malaria and its operational challenges. Am J Trop Med Hyg. 2015;93:125–34.CrossRef Newby G, Hwang J, Koita K, Chen I, Greenwood B, von Seidlein L, et al. Review of mass drug administration for malaria and its operational challenges. Am J Trop Med Hyg. 2015;93:125–34.CrossRef
7.
go back to reference Larsen DA, Bennett A, Silumbe K, Hamainza B, Yukich JO, Keating J, et al. Population-wide malaria testing and treatment with rapid diagnostic tests and artemether-lumefantrine in southern Zambia: a community randomized step-wedge control trial design. Am J Trop Med Hyg. 2015;92:913–21.CrossRef Larsen DA, Bennett A, Silumbe K, Hamainza B, Yukich JO, Keating J, et al. Population-wide malaria testing and treatment with rapid diagnostic tests and artemether-lumefantrine in southern Zambia: a community randomized step-wedge control trial design. Am J Trop Med Hyg. 2015;92:913–21.CrossRef
8.
go back to reference Morris U, Msellem MI, Mkali H, Islam A, Aydin-Schmidt B, Jovel I, et al. A cluster randomised controlled trial of two rounds of mass drug administration in Zanzibar, a malaria pre-elimination setting-high coverage and safety, but no significant impact on transmission. BMC Med. 2018;16:215.CrossRef Morris U, Msellem MI, Mkali H, Islam A, Aydin-Schmidt B, Jovel I, et al. A cluster randomised controlled trial of two rounds of mass drug administration in Zanzibar, a malaria pre-elimination setting-high coverage and safety, but no significant impact on transmission. BMC Med. 2018;16:215.CrossRef
11.
go back to reference Chitnis N, Schapira A, Schindler C, Penny MA, Smith TA. Mathematical analysis to prioritise strategies for malaria elimination. J Theor Biol. 2018;455:118–30.CrossRef Chitnis N, Schapira A, Schindler C, Penny MA, Smith TA. Mathematical analysis to prioritise strategies for malaria elimination. J Theor Biol. 2018;455:118–30.CrossRef
12.
go back to reference Larsen DA, Chisha Z, Winters B, Mwanza M, Kamuliwo M, Mbwili C, et al. Malaria surveillance in low-transmission areas of Zambia using reactive case detection. Malar J. 2015;14:465.CrossRef Larsen DA, Chisha Z, Winters B, Mwanza M, Kamuliwo M, Mbwili C, et al. Malaria surveillance in low-transmission areas of Zambia using reactive case detection. Malar J. 2015;14:465.CrossRef
13.
go back to reference Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province. Zambia Malar J. 2010;9:265.CrossRef Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province. Zambia Malar J. 2010;9:265.CrossRef
14.
go back to reference WHO. Disease surveillance for malaria elimination. An operational manual. Geneva:World Health Organization; 2012. WHO. Disease surveillance for malaria elimination. An operational manual. Geneva:World Health Organization; 2012.
15.
go back to reference Searle KM, Shields T, Hamapumbu H, Kobayashi T, Mharakurwa S, Thuma PE, et al. Efficiency of household reactive case detection for malaria in rural Southern Zambia: simulations based on cross-sectional surveys from two epidemiological settings. PLoS ONE. 2013;8:e70972.CrossRef Searle KM, Shields T, Hamapumbu H, Kobayashi T, Mharakurwa S, Thuma PE, et al. Efficiency of household reactive case detection for malaria in rural Southern Zambia: simulations based on cross-sectional surveys from two epidemiological settings. PLoS ONE. 2013;8:e70972.CrossRef
16.
go back to reference Sturrock HJ, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM. Reactive case detection for malaria elimination: real-life experience from an ongoing program in Swaziland. PLoS ONE. 2013;8:e63830.CrossRef Sturrock HJ, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM. Reactive case detection for malaria elimination: real-life experience from an ongoing program in Swaziland. PLoS ONE. 2013;8:e63830.CrossRef
17.
go back to reference Abeyasinghe RR, Galappaththy GN, Gueye SC, Kahn JG, Feachem RG. Malaria control and elimination in Sri Lanka: documenting progress and success factors in a conflict setting. PLoS ONE. 2012;7:e43162.CrossRef Abeyasinghe RR, Galappaththy GN, Gueye SC, Kahn JG, Feachem RG. Malaria control and elimination in Sri Lanka: documenting progress and success factors in a conflict setting. PLoS ONE. 2012;7:e43162.CrossRef
18.
go back to reference Gao BA-O, Saralamba S, Lubell Y, White LJ, Dondorp AA-O, Aguas RA-O. Determinants of MDA impact and designing MDAs towards malaria elimination. eLife. 2020;9:e51773.CrossRef Gao BA-O, Saralamba S, Lubell Y, White LJ, Dondorp AA-O, Aguas RA-O. Determinants of MDA impact and designing MDAs towards malaria elimination. eLife. 2020;9:e51773.CrossRef
19.
go back to reference Searle KM, Hamapumbu H, Lubinda J, Shields TM, Pinchoff J, Kobayashi T, et al. Evaluation of the operational challenges in implementing reactive screen-and-treat and implications of reactive case detection strategies for malaria elimination in a region of low transmission in southern Zambia. Malar J. 2016;15:412.CrossRef Searle KM, Hamapumbu H, Lubinda J, Shields TM, Pinchoff J, Kobayashi T, et al. Evaluation of the operational challenges in implementing reactive screen-and-treat and implications of reactive case detection strategies for malaria elimination in a region of low transmission in southern Zambia. Malar J. 2016;15:412.CrossRef
20.
go back to reference Bansil P, Yeshiwondim AK, Guinovart C, Serda B, Scott C, Tesfay BH, et al. Malaria case investigation with reactive focal testing and treatment: operational feasibility and lessons learned from low and moderate transmission areas in Amhara Region. Ethiopia Malar J. 2018;17:449.CrossRef Bansil P, Yeshiwondim AK, Guinovart C, Serda B, Scott C, Tesfay BH, et al. Malaria case investigation with reactive focal testing and treatment: operational feasibility and lessons learned from low and moderate transmission areas in Amhara Region. Ethiopia Malar J. 2018;17:449.CrossRef
21.
go back to reference Dierickx S, Gryseels C, Mwesigwa J, O’Neill S, Bannister-Tyrell M, Ronse M, et al. Factors associated with non-participation and non-adherence in directly observed mass drug administration for malaria in The Gambia. PLoS ONE. 2016;11:e0148627.CrossRef Dierickx S, Gryseels C, Mwesigwa J, O’Neill S, Bannister-Tyrell M, Ronse M, et al. Factors associated with non-participation and non-adherence in directly observed mass drug administration for malaria in The Gambia. PLoS ONE. 2016;11:e0148627.CrossRef
22.
go back to reference Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8:e1000406.CrossRef Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8:e1000406.CrossRef
23.
go back to reference Ceesay SJ, Casals-Pascual C, Nwakanma DC, Walther M, Gomez-Escobar N, Fulford AJ, et al. Continued decline of malaria in The Gambia with implications for elimination. PLoS ONE. 2010;5:e12242.CrossRef Ceesay SJ, Casals-Pascual C, Nwakanma DC, Walther M, Gomez-Escobar N, Fulford AJ, et al. Continued decline of malaria in The Gambia with implications for elimination. PLoS ONE. 2010;5:e12242.CrossRef
24.
go back to reference van den Hoogen LL, Griffin JT, Cook J, Sepulveda N, Corran P, Conway DJ, et al. Serology describes a profile of declining malaria transmission in Farafenni. Gambia Malar J. 2015;14:416.CrossRef van den Hoogen LL, Griffin JT, Cook J, Sepulveda N, Corran P, Conway DJ, et al. Serology describes a profile of declining malaria transmission in Farafenni. Gambia Malar J. 2015;14:416.CrossRef
25.
go back to reference WHO, UNICEF. Seasonal malaria chemoprevention: supply and demand update. Geneva:World Health Organization; 2017. WHO, UNICEF. Seasonal malaria chemoprevention: supply and demand update. Geneva:World Health Organization; 2017.
26.
go back to reference Jaiteh F, Masunaga Y, Okebe J, D’Alessandro U, Balen J, Bradley J, et al. Community perspectives on treating asymptomatic infections for malaria elimination in The Gambia. Malar J. 2019;18:39.CrossRef Jaiteh F, Masunaga Y, Okebe J, D’Alessandro U, Balen J, Bradley J, et al. Community perspectives on treating asymptomatic infections for malaria elimination in The Gambia. Malar J. 2019;18:39.CrossRef
27.
go back to reference Mwesigwa J, Achan J, Di Tanna GL, Affara M, Jawara M, Worwui A, et al. Residual malaria transmission dynamics varies across The Gambia despite high coverage of control interventions. PLoS ONE. 2017;2:e0187059.CrossRef Mwesigwa J, Achan J, Di Tanna GL, Affara M, Jawara M, Worwui A, et al. Residual malaria transmission dynamics varies across The Gambia despite high coverage of control interventions. PLoS ONE. 2017;2:e0187059.CrossRef
28.
go back to reference Mwesigwa J, Okebe J, Affara M, Di Tanna GL, Nwakanma D, Janha O, et al. On-going malaria transmission in The Gambia despite high coverage of control interventions: a nationwide cross-sectional survey. Malar J. 2015;14:314.CrossRef Mwesigwa J, Okebe J, Affara M, Di Tanna GL, Nwakanma D, Janha O, et al. On-going malaria transmission in The Gambia despite high coverage of control interventions: a nationwide cross-sectional survey. Malar J. 2015;14:314.CrossRef
29.
go back to reference Okebe J, Ribera JM, Balen J, Jaiteh F, Masunaga Y, Nwakanma D, et al. Reactive community-based self-administered treatment against residual malaria transmission: study protocol for a randomized controlled trial. Trials. 2018;19:126.CrossRef Okebe J, Ribera JM, Balen J, Jaiteh F, Masunaga Y, Nwakanma D, et al. Reactive community-based self-administered treatment against residual malaria transmission: study protocol for a randomized controlled trial. Trials. 2018;19:126.CrossRef
30.
go back to reference Preston A, Okebe J, Balen J, Ribera JM, Masunaga Y, Bah A, et al. Involving community health workers in disease-specific interventions: perspectives from The Gambia on the impact of this approach. J Glob Health Rep. 2019;3:e2019084.CrossRef Preston A, Okebe J, Balen J, Ribera JM, Masunaga Y, Bah A, et al. Involving community health workers in disease-specific interventions: perspectives from The Gambia on the impact of this approach. J Glob Health Rep. 2019;3:e2019084.CrossRef
31.
go back to reference Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I. Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med. 2015;12:e1001788.CrossRef Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I. Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med. 2015;12:e1001788.CrossRef
32.
go back to reference Churcher TS, Bousema T, Walker M, Drakeley C, Schneider P, Ouédraogo AL, et al. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. eLife. 2013;2:e00626.CrossRef Churcher TS, Bousema T, Walker M, Drakeley C, Schneider P, Ouédraogo AL, et al. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. eLife. 2013;2:e00626.CrossRef
33.
go back to reference Vilakati S, Mngadi N, Benjamin-Chung J, Dlamini N, Dufour M-SK, Whittemore B, et al. Effectiveness and safety of reactive focal mass drug administration (rfMDA) using dihydroartemisinin-piperaquine to reduce malaria transmission in very low-endemic setting of Eswatini: a pragmatic cluster randomised controlled trial. medRxiv. 2021. https://doi.org/10.1101/2021.03.12.21252721CrossRef Vilakati S, Mngadi N, Benjamin-Chung J, Dlamini N, Dufour M-SK, Whittemore B, et al. Effectiveness and safety of reactive focal mass drug administration (rfMDA) using dihydroartemisinin-piperaquine to reduce malaria transmission in very low-endemic setting of Eswatini: a pragmatic cluster randomised controlled trial. medRxiv. 2021. https://​doi.​org/​10.​1101/​2021.​03.​12.​21252721CrossRef
34.
go back to reference Oduro AR, Conway DJ, Schellenberg D, Satoguina J, Greenwood BM, Bojang KA. Seroepidemiological and parasitological evaluation of the heterogeneity of malaria infection in The Gambia. Malar J. 2013;12:222.CrossRef Oduro AR, Conway DJ, Schellenberg D, Satoguina J, Greenwood BM, Bojang KA. Seroepidemiological and parasitological evaluation of the heterogeneity of malaria infection in The Gambia. Malar J. 2013;12:222.CrossRef
35.
go back to reference Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, Fulford AJ, et al. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet. 2008;372:1545–54.CrossRef Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, Fulford AJ, et al. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet. 2008;372:1545–54.CrossRef
36.
go back to reference Hsiang MS, Ntuku H, Roberts KW, Dufour MK, Whittemore B, Tambo M, et al. Effectiveness of reactive focal mass drug administration and reactive focal vector control to reduce malaria transmission in the low malaria-endemic setting of Namibia: a cluster-randomised controlled, open-label, two-by-two factorial design trial. Lancet. 2020;395:1361–73.CrossRef Hsiang MS, Ntuku H, Roberts KW, Dufour MK, Whittemore B, Tambo M, et al. Effectiveness of reactive focal mass drug administration and reactive focal vector control to reduce malaria transmission in the low malaria-endemic setting of Namibia: a cluster-randomised controlled, open-label, two-by-two factorial design trial. Lancet. 2020;395:1361–73.CrossRef
37.
go back to reference Bejon P, Turner L, Lavstsen T, Cham G, Olotu A, Drakeley CJ, et al. Serological evidence of discrete spatial clusters of Plasmodium falciparum parasites. PLoS ONE. 2011;6:e21711.CrossRef Bejon P, Turner L, Lavstsen T, Cham G, Olotu A, Drakeley CJ, et al. Serological evidence of discrete spatial clusters of Plasmodium falciparum parasites. PLoS ONE. 2011;6:e21711.CrossRef
38.
go back to reference Okebe J, Affara M, Correa S, Muhammad AK, Nwakanma D, Drakeley C, et al. School-based countrywide seroprevalence survey reveals spatial heterogeneity in malaria transmission in The Gambia. PLoS ONE. 2014;9:e110926.CrossRef Okebe J, Affara M, Correa S, Muhammad AK, Nwakanma D, Drakeley C, et al. School-based countrywide seroprevalence survey reveals spatial heterogeneity in malaria transmission in The Gambia. PLoS ONE. 2014;9:e110926.CrossRef
39.
go back to reference Kabaghe AN, Chipeta MG, McCann RS, Phiri KS, van Vugt M, Takken W, et al. Adaptive geostatistical sampling enables efficient identification of malaria hotspots in repeated cross-sectional surveys in rural Malawi. PLoS ONE. 2017;12:e0172266.CrossRef Kabaghe AN, Chipeta MG, McCann RS, Phiri KS, van Vugt M, Takken W, et al. Adaptive geostatistical sampling enables efficient identification of malaria hotspots in repeated cross-sectional surveys in rural Malawi. PLoS ONE. 2017;12:e0172266.CrossRef
40.
go back to reference Kangoye DT, Noor A, Midega J, Mwongeli J, Mkabili D, Mogeni P, et al. Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the Kenyan Coast. Malar J. 2016;15:213.CrossRef Kangoye DT, Noor A, Midega J, Mwongeli J, Mkabili D, Mogeni P, et al. Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the Kenyan Coast. Malar J. 2016;15:213.CrossRef
41.
go back to reference van Eijk AM, Ramanathapuram L, Sutton PL, Kanagaraj D, Priya GSL, Ravishankaran S, Asokan A, Tandel N, Patel A, Desai N, et al. What is the value of reactive case detection in malaria control? A case-study in India and a systematic review. Malar J. 2016;15:67.CrossRef van Eijk AM, Ramanathapuram L, Sutton PL, Kanagaraj D, Priya GSL, Ravishankaran S, Asokan A, Tandel N, Patel A, Desai N, et al. What is the value of reactive case detection in malaria control? A case-study in India and a systematic review. Malar J. 2016;15:67.CrossRef
Metadata
Title
Reactive, self-administered malaria treatment against asymptomatic malaria infection: results of a cluster randomized controlled trial in The Gambia
Authors
Joseph Okebe
Edgard Dabira
Fatou Jaiteh
Nuredin Mohammed
John Bradley
Ndey-Fatou Drammeh
Amadou Bah
Yoriko Masunaga
Jane Achan
Joan Muela Ribera
Shunmay Yeung
Julie Balen
Koen Peeters Grietens
Umberto D’Alessandro
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03761-8

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.