Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Malaria case investigation with reactive focal testing and treatment: operational feasibility and lessons learned from low and moderate transmission areas in Amhara Region, Ethiopia

Authors: Pooja Bansil, Asnakew K. Yeshiwondim, Caterina Guinovart, Belendia Serda, Callie Scott, Berhane H. Tesfay, Adem Agmas, Belay Bezabih, Melkamu T. Zeleke, Girma S. Guesses, Asmamaw L. Ayenew, Worku M. Workie, Duncan Earle, Rick W. Steketee, Asefaw Getachew

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

When malaria transmission is very low, investigation of passively detected malaria cases and reactive focal testing and treatment (FTAT) in the case and neighbouring households can identify and contain the source and spread of infections.

Methods

Case investigation with reactive FTAT for malaria was implemented in 10 villages in Amhara Region, Ethiopia during the 2014/2015 malaria transmission season. Intervention villages were purposively selected based on the incidence of passively detected Plasmodium falciparum and mixed infections (P. falciparum and Plasmodium vivax) during the 2013 transmission season. A passively detected P. falciparum or mixed index case triggered an investigation that targeted the index case household and the closest 10 neighbouring households in a 100-m radius. All consenting household members received a rapid diagnostic test (RDT) and RDT-positive individuals received artemether–lumefantrine (P. falciparum, mixed) or chloroquine (P. vivax).

Results

From October 2014 to February 2015, 407 P. falciparum or mixed index cases (approximately 6.5 per 1000 population) were passively detected. Of these, 220 (54.1%) were investigated, of which 87.3% were male, 61.8% were age 20–39 years [median age: 27 years (range 1–90)], and 58.6% spent ≥ 1 night away from home in the past month (ranging from 0.0 to 94.1% by village). Among the 4077 residents in the 914 households investigated, 3243 (79.5%) received an RDT and 127 (3.9%) were RDT-positive (2.2% P. falciparum, 0.5% P. vivax, 1.2% mixed). Three epidemiological patterns were found. In six villages, there were almost no cases, with less than 10 index and secondary cases. In three villages, most index cases had a history of travel (> 62%), but there were a small number of secondary cases (< 10). Lastly, in one village none of the index cases had a history of recent travel and there was a large number of secondary cases (n = 105).

Conclusions

Three types of malaria transmission patterns were observed: (1) low importation and low local transmission; (2) high importation and low local transmission; and, (3) low importation and high local transmission. To achieve malaria elimination in Amhara Region, intervention strategies targeting these different patterns of transmission and population movement are required.
Appendix
Available only for authorised users
Literature
1.
go back to reference Federal Ministry of Health National Malaria Strategic Plan: 2017–2020. Addis Ababa, Ethiopia, 2017. Federal Ministry of Health National Malaria Strategic Plan: 2017–2020. Addis Ababa, Ethiopia, 2017.
2.
go back to reference Otten M, Aregawi M, Were W, Karema C, Medin A, Bekele W, et al. Initial evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J. 2009;8:14.CrossRefPubMedPubMedCentral Otten M, Aregawi M, Were W, Karema C, Medin A, Bekele W, et al. Initial evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J. 2009;8:14.CrossRefPubMedPubMedCentral
3.
go back to reference Sturrock HJW, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013;10:e1001467.CrossRefPubMedPubMedCentral Sturrock HJW, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013;10:e1001467.CrossRefPubMedPubMedCentral
4.
go back to reference Von Seidlein L, Greenwood BM. Mass administrations of antimalarial drugs. Trends Parasitol. 2003;19:452–60.CrossRef Von Seidlein L, Greenwood BM. Mass administrations of antimalarial drugs. Trends Parasitol. 2003;19:452–60.CrossRef
5.
go back to reference Banek K, Lalani M, Staedke SG, Chandramohan D. Adherence to artemisinin-based combination therapy for the treatment of malaria: a systematic review of the evidence. Malar J. 2014;13:7.CrossRefPubMedPubMedCentral Banek K, Lalani M, Staedke SG, Chandramohan D. Adherence to artemisinin-based combination therapy for the treatment of malaria: a systematic review of the evidence. Malar J. 2014;13:7.CrossRefPubMedPubMedCentral
6.
go back to reference Federal Ministry of Health. Ethiopian National Malaria Indicator Survey, 2015. Ethiopia: Ethiopian Public Health Institute (EPHI), Addis Ababa; 2016. Federal Ministry of Health. Ethiopian National Malaria Indicator Survey, 2015. Ethiopia: Ethiopian Public Health Institute (EPHI), Addis Ababa; 2016.
7.
go back to reference Central Statistical Agency. Population and Housing Census Report. Federal Democratic Republic of Ethiopia, Central Statistical Agency. 2007. Central Statistical Agency. Population and Housing Census Report. Federal Democratic Republic of Ethiopia, Central Statistical Agency. 2007.
10.
go back to reference Schicker RS, Hiruy N, Melak B, Gelaye W, Bezabih B, Stephenson R, et al. A venue-based survey of malaria, anemia and mobility patterns among migrant farm workers in Amhara Region, Ethiopia. PLoS One. 2015;10:e0143829.CrossRefPubMedPubMedCentral Schicker RS, Hiruy N, Melak B, Gelaye W, Bezabih B, Stephenson R, et al. A venue-based survey of malaria, anemia and mobility patterns among migrant farm workers in Amhara Region, Ethiopia. PLoS One. 2015;10:e0143829.CrossRefPubMedPubMedCentral
11.
go back to reference Guyant P, Canavati SE, Chea N, Ly P, Whittaker MA, Roca-Feltrer A, Yeung S. Malaria and the mobile and migrant population in Cambodia: a population movement framework to inform strategies for malaria control and elimination. Malar J. 2015;14:252.CrossRefPubMedPubMedCentral Guyant P, Canavati SE, Chea N, Ly P, Whittaker MA, Roca-Feltrer A, Yeung S. Malaria and the mobile and migrant population in Cambodia: a population movement framework to inform strategies for malaria control and elimination. Malar J. 2015;14:252.CrossRefPubMedPubMedCentral
12.
go back to reference Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia. Malar J. 2010;9:265.PubMedPubMedCentral Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia. Malar J. 2010;9:265.PubMedPubMedCentral
13.
go back to reference Baltzell KA, Shakely D, Hsiang M, Kemere J, Ali AS, Bjorkman A, et al. Prevalence of PCR detectable malaria infection among febrile patients with a negative Plasmodium falciparum specific rapid diagnostic test in Zanzibar. Am J Trop Med Hyg. 2013;88:289–91.CrossRefPubMedPubMedCentral Baltzell KA, Shakely D, Hsiang M, Kemere J, Ali AS, Bjorkman A, et al. Prevalence of PCR detectable malaria infection among febrile patients with a negative Plasmodium falciparum specific rapid diagnostic test in Zanzibar. Am J Trop Med Hyg. 2013;88:289–91.CrossRefPubMedPubMedCentral
14.
go back to reference Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.CrossRefPubMedPubMedCentral Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.CrossRefPubMedPubMedCentral
15.
go back to reference Gatton ML, Ciketic S, Barnwell JW, Cheng Q, Chiodini PL, Incardona S, Bell D, Cunningham J, González IJ, Snounou G. An assessment of false positive rates for malaria rapid diagnostic tests caused by non-Plasmodium infectious agents and immunological factors. PLoS One. 2018;13:e0197395.CrossRefPubMedPubMedCentral Gatton ML, Ciketic S, Barnwell JW, Cheng Q, Chiodini PL, Incardona S, Bell D, Cunningham J, González IJ, Snounou G. An assessment of false positive rates for malaria rapid diagnostic tests caused by non-Plasmodium infectious agents and immunological factors. PLoS One. 2018;13:e0197395.CrossRefPubMedPubMedCentral
16.
go back to reference Yalew WG, Pal S, Bansil P, Dabbs R, Tetteh K, Guinovart C, Kalnoky M, Serda BA, Tesfay BH, Beyene BB Seneviratne C, Littrell M, Yokobe L, Noland GS, Domingo GJ, Getachew A, Drakeley C, Steketee RW. Current and cumulative malaria infections in a setting embarking on elimination. Amhara, Ethiopia. Malar J. 2017;16:242. Yalew WG, Pal S, Bansil P, Dabbs R, Tetteh K, Guinovart C, Kalnoky M, Serda BA, Tesfay BH, Beyene BB Seneviratne C, Littrell M, Yokobe L, Noland GS, Domingo GJ, Getachew A, Drakeley C, Steketee RW. Current and cumulative malaria infections in a setting embarking on elimination. Amhara, Ethiopia. Malar J. 2017;16:242.
Metadata
Title
Malaria case investigation with reactive focal testing and treatment: operational feasibility and lessons learned from low and moderate transmission areas in Amhara Region, Ethiopia
Authors
Pooja Bansil
Asnakew K. Yeshiwondim
Caterina Guinovart
Belendia Serda
Callie Scott
Berhane H. Tesfay
Adem Agmas
Belay Bezabih
Melkamu T. Zeleke
Girma S. Guesses
Asmamaw L. Ayenew
Worku M. Workie
Duncan Earle
Rick W. Steketee
Asefaw Getachew
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2587-8

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue