Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

Characterisation of plasmodial transketolases and identification of potential inhibitors: an in silico study

Authors: Rita Afriyie Boateng, Özlem Tastan Bishop, Thommas Mutemi Musyoka

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Plasmodial transketolase (PTKT) enzyme is one of the novel pharmacological targets being explored as potential anti-malarial drug target due to its functional role and low sequence identity to the human enzyme. Despite this, features contributing to such have not been exploited for anti-malarial drug design. Additionally, there are no anti-malarial drugs targeting PTKTs whereas the broad activity of these inhibitors against PTKTs from other Plasmodium spp. is yet to be reported. This study characterises different PTKTs [Plasmodium falciparum (PfTKT), Plasmodium vivax (PvTKT), Plasmodium ovale (PoTKT), Plasmodium malariae (PmTKT) and Plasmodium knowlesi (PkTKT) and the human homolog (HsTKT)] to identify key sequence and structural based differences as well as the identification of selective potential inhibitors against PTKTs.

Methods

A sequence-based study was carried out using multiple sequence alignment, phylogenetic tree calculations and motif discovery analysis. Additionally, TKT models of PfTKT, PmTKT, PoTKT, PmTKT and PkTKT were modelled using the Saccharomyces cerevisiae TKT structure as template. Based on the modelled structures, molecular docking using 623 South African natural compounds was done. The stability, conformational changes and detailed interactions of selected compounds were accessed viz all-atom molecular dynamics (MD) simulations and binding free energy (BFE) calculations.

Results

Sequence alignment, evolutionary and motif analyses revealed key differences between plasmodial and the human TKTs. High quality homodimeric three-dimensional PTKTs structures were constructed. Molecular docking results identified three compounds (SANC00107, SANC00411 and SANC00620) which selectively bind in the active site of all PTKTs with the lowest (better) binding affinity ≤ − 8.5 kcal/mol. MD simulations of ligand-bound systems showed stable fluctuations upon ligand binding. In all systems, ligands bind stably throughout the simulation and form crucial interactions with key active site residues. Simulations of selected compounds in complex with human TKT showed that ligands exited their binding sites at different time steps. BFE of protein–ligand complexes showed key residues involved in binding.

Conclusions

This study highlights significant differences between plasmodial and human TKTs and may provide valuable information for the development of novel anti-malarial inhibitors. Identified compounds may provide a starting point in the rational design of PTKT inhibitors and analogues based on these scaffolds.
Appendix
Available only for authorised users
Literature
2.
go back to reference Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK. Molecular cloning and characterization of Plasmodium falciparum transketolase. Mol Biochem Parasitol. 2008;160:32–41.PubMed Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK. Molecular cloning and characterization of Plasmodium falciparum transketolase. Mol Biochem Parasitol. 2008;160:32–41.PubMed
3.
go back to reference Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol. 1998;30:1297–318.PubMed Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol. 1998;30:1297–318.PubMed
4.
go back to reference Mitschke L, Parthier C, Schröder-Tittmann K, Coy J, Lüdtke S, Tittmann K. The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem. 2010;285:31559–70.PubMedPubMedCentral Mitschke L, Parthier C, Schröder-Tittmann K, Coy J, Lüdtke S, Tittmann K. The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem. 2010;285:31559–70.PubMedPubMedCentral
5.
go back to reference Heinrich PC, Steffen H, Janser P, Wiss O. Studies on the reconstitution of apotransketolase with thiamine pyrophosphate and analogs of the coenzyme. Eur J Biochem. 1972;30:533–41.PubMed Heinrich PC, Steffen H, Janser P, Wiss O. Studies on the reconstitution of apotransketolase with thiamine pyrophosphate and analogs of the coenzyme. Eur J Biochem. 1972;30:533–41.PubMed
6.
go back to reference Muller YA, Lindqvist Y, Furey W, Schulz GE, Jordan F, Schneider G. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure. 1993;1:95–103.PubMed Muller YA, Lindqvist Y, Furey W, Schulz GE, Jordan F, Schneider G. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure. 1993;1:95–103.PubMed
7.
go back to reference Wille G, Meyer D, Steinmetz A, Hinze E, Golbik R, Tittmann K. The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography. Nat Chem Biol. 2006;2:324–8.PubMed Wille G, Meyer D, Steinmetz A, Hinze E, Golbik R, Tittmann K. The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography. Nat Chem Biol. 2006;2:324–8.PubMed
8.
go back to reference Lindqvist Y, Schneider G, Ermler U, Sundström M. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 Å resolution. Embo J. 1992;11:2373–9.PubMedPubMedCentral Lindqvist Y, Schneider G, Ermler U, Sundström M. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 Å resolution. Embo J. 1992;11:2373–9.PubMedPubMedCentral
9.
go back to reference Kochetov G, Sevostyanova IA. Binding of the coenzyme and formation of the transketolase active center. IUBMB Life. 2005;57:491–7.PubMed Kochetov G, Sevostyanova IA. Binding of the coenzyme and formation of the transketolase active center. IUBMB Life. 2005;57:491–7.PubMed
10.
go back to reference Tittmann K. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Bioorg Chem. 2014;57:263–80.PubMed Tittmann K. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Bioorg Chem. 2014;57:263–80.PubMed
11.
go back to reference Nikkola M, Lindqvist Y, Schneider G. Refined structure of transketolase from Saccharomyces cerevisiae at 2·0 Å resolution. J Mol Biol. 1994;238:387–404.PubMed Nikkola M, Lindqvist Y, Schneider G. Refined structure of transketolase from Saccharomyces cerevisiae at 2·0 Å resolution. J Mol Biol. 1994;238:387–404.PubMed
12.
go back to reference Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 2010;70:6368–76.PubMed Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 2010;70:6368–76.PubMed
13.
go back to reference Atamna H, Ginsburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1993;61:231–41.PubMed Atamna H, Ginsburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1993;61:231–41.PubMed
14.
go back to reference Nilsson U, Lindqvist Y, Kluger R, Schneider G. Crystal structure of transketolase in complex with thiamine thiazolone diphosphate, an analogue of the reaction intermediate, at 2.3 Å resolution. FEBS Lett. 1993;326:145–8.PubMed Nilsson U, Lindqvist Y, Kluger R, Schneider G. Crystal structure of transketolase in complex with thiamine thiazolone diphosphate, an analogue of the reaction intermediate, at 2.3 Å resolution. FEBS Lett. 1993;326:145–8.PubMed
15.
go back to reference Nilsson U, Meshalkina L, Lindqvist Y, Schneider G. Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. J Biol Chem. 1997;272:1864–9.PubMed Nilsson U, Meshalkina L, Lindqvist Y, Schneider G. Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. J Biol Chem. 1997;272:1864–9.PubMed
16.
go back to reference Solovjeva ON, Kochetov GA. Inhibition of transketolase by p-hydroxyphenylpyruvate. FEBS Lett. 1999;462:246–8.PubMed Solovjeva ON, Kochetov GA. Inhibition of transketolase by p-hydroxyphenylpyruvate. FEBS Lett. 1999;462:246–8.PubMed
17.
go back to reference Sharma M, Chauhan K, Chauhan SS, Kumar A, Singh SV, Saxena JK, et al. Synthesis of hybrid 4-anilinoquinoline triazines as potent antimalarial agents, their in silico modeling and bioevaluation as Plasmodium falciparum transketolase and β-hematin inhibitors. Med Chem Commun. 2012;3:71–9. Sharma M, Chauhan K, Chauhan SS, Kumar A, Singh SV, Saxena JK, et al. Synthesis of hybrid 4-anilinoquinoline triazines as potent antimalarial agents, their in silico modeling and bioevaluation as Plasmodium falciparum transketolase and β-hematin inhibitors. Med Chem Commun. 2012;3:71–9.
18.
go back to reference Kotra L, Meza-Avina M, Wei L, Buhendwa M, Poduch E, Bello A, et al. Inhibition of orotidine 5-monophosphate decarboxylase and its therapeutic potential: mini-reviews. Med Chem. 2008;8:239–47. Kotra L, Meza-Avina M, Wei L, Buhendwa M, Poduch E, Bello A, et al. Inhibition of orotidine 5-monophosphate decarboxylase and its therapeutic potential: mini-reviews. Med Chem. 2008;8:239–47.
19.
go back to reference Pavadai E, El Mazouni F, Wittlin S, de Kock C, Phillips MA, Chibale K. Identification of new human malaria parasite Plasmodium falciparum dihydroorotate dehydrogenase inhibitors by pharmacophore and structure-based virtual screening. J Chem Inf Model. 2016;56:548–62.PubMedPubMedCentral Pavadai E, El Mazouni F, Wittlin S, de Kock C, Phillips MA, Chibale K. Identification of new human malaria parasite Plasmodium falciparum dihydroorotate dehydrogenase inhibitors by pharmacophore and structure-based virtual screening. J Chem Inf Model. 2016;56:548–62.PubMedPubMedCentral
20.
go back to reference Wadood A, Ghufran M, Hassan SF, Khan H, Azam SS, Rashid U. In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase for treatment of falciparum malaria. Pharm Biol. 2017;55:19–32.PubMed Wadood A, Ghufran M, Hassan SF, Khan H, Azam SS, Rashid U. In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase for treatment of falciparum malaria. Pharm Biol. 2017;55:19–32.PubMed
21.
go back to reference Hatherley R, Brown DK, Musyoka TM, Penkler DL, Faya N, Lobb KA, et al. SANCDB: a South African natural compound database. J Cheminform. 2015;7:29.PubMedPubMedCentral Hatherley R, Brown DK, Musyoka TM, Penkler DL, Faya N, Lobb KA, et al. SANCDB: a South African natural compound database. J Cheminform. 2015;7:29.PubMedPubMedCentral
22.
go back to reference Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.PubMed Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.PubMed
23.
go back to reference Coordinators NR. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2017;45:D12–7. Coordinators NR. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2017;45:D12–7.
24.
go back to reference Pei J, Grishin NV. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol Biol. 2014;1079:263–71.PubMedPubMedCentral Pei J, Grishin NV. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol Biol. 2014;1079:263–71.PubMedPubMedCentral
25.
go back to reference Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol. 2014;1079:131–46.PubMed Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol. 2014;1079:131–46.PubMed
26.
go back to reference Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics. 2009;25:1189–91.PubMedPubMedCentral Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics. 2009;25:1189–91.PubMedPubMedCentral
27.
go back to reference Hatherley R, Clitheroe C-L, Faya N, Tastan BÖ. Plasmodium falciparum Hop: detailed analysis on complex formation with Hsp70 and Hsp90. Biochem Biophys Res Commun. 2015;456:440–5.PubMed Hatherley R, Clitheroe C-L, Faya N, Tastan BÖ. Plasmodium falciparum Hop: detailed analysis on complex formation with Hsp70 and Hsp90. Biochem Biophys Res Commun. 2015;456:440–5.PubMed
28.
go back to reference Le SQ, Lartillot N, Gascuel O. Phylogenetic mixture models for proteins. Philos Trans R Soc B Biol Sci. 2008;363:3965–76. Le SQ, Lartillot N, Gascuel O. Phylogenetic mixture models for proteins. Philos Trans R Soc B Biol Sci. 2008;363:3965–76.
29.
go back to reference Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.PubMedPubMedCentral Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.PubMedPubMedCentral
30.
go back to reference Fiser A, Šali A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 2003;374:461–91.PubMed Fiser A, Šali A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 2003;374:461–91.PubMed
31.
go back to reference Hatherley R, Brown DK, Glenister M, Tastan BÖ. PRIMO: an interactive homology modeling pipeline. PLoS ONE. 2016;11:e0166698.PubMedPubMedCentral Hatherley R, Brown DK, Glenister M, Tastan BÖ. PRIMO: an interactive homology modeling pipeline. PLoS ONE. 2016;11:e0166698.PubMedPubMedCentral
32.
go back to reference Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91.
33.
go back to reference Eisenberg D, Lüthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997;277:396–404.PubMed Eisenberg D, Lüthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997;277:396–404.PubMed
34.
go back to reference Benkert P, Tosatto SCE, Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins Struct Funct Bioinform. 2008;71:261–77. Benkert P, Tosatto SCE, Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins Struct Funct Bioinform. 2008;71:261–77.
35.
go back to reference Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10.PubMedPubMedCentral Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10.PubMedPubMedCentral
36.
go back to reference Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S. Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol. 2017;1607:627–41.PubMedPubMedCentral Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S. Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol. 2017;1607:627–41.PubMedPubMedCentral
37.
go back to reference Shen M, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15:2507–24.PubMedPubMedCentral Shen M, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15:2507–24.PubMedPubMedCentral
39.
go back to reference Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.PubMedPubMedCentral Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.PubMedPubMedCentral
40.
go back to reference San Diego: Accelrys Software Inc. Discovery studio modeling environment, release 3.5. Accelrys Softw. Inc. 2012. San Diego: Accelrys Software Inc. Discovery studio modeling environment, release 3.5. Accelrys Softw. Inc. 2012.
41.
go back to reference El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G. AutoDock and AutoDockTools for protein–ligand docking: beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol Biol. 2017;1598:391–403.PubMed El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G. AutoDock and AutoDockTools for protein–ligand docking: beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol Biol. 2017;1598:391–403.PubMed
42.
go back to reference Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1:337–41.PubMed Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1:337–41.PubMed
43.
go back to reference Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinform. 2012;13:S7. Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinform. 2012;13:S7.
44.
go back to reference Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–40.PubMed Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–40.PubMed
45.
go back to reference Baell JB, Nissink JWM. Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem Biol. 2018;13:36–44.PubMed Baell JB, Nissink JWM. Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem Biol. 2018;13:36–44.PubMed
46.
go back to reference Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–86.PubMed Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–86.PubMed
47.
go back to reference Abraham M, Hess B, van der Spoel D, Lindahl E. User manual. Berlin: Springer; 2015. p. 1–259. Abraham M, Hess B, van der Spoel D, Lindahl E. User manual. Berlin: Springer; 2015. p. 1–259.
48.
go back to reference Kollman P, Dixon R, Cornell W, Fox T, Chipot C, Pohorille A. The development/application of a ‘minimalist’ organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data. In: Van Gunsteren WF, Weiner PK, Wilkinson AJ, editors. Computer simulation of biomolecular systems. Dordrecht: Springer; 1997. p. 83–96. Kollman P, Dixon R, Cornell W, Fox T, Chipot C, Pohorille A. The development/application of a ‘minimalist’ organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data. In: Van Gunsteren WF, Weiner PK, Wilkinson AJ, editors. Computer simulation of biomolecular systems. Dordrecht: Springer; 1997. p. 83–96.
49.
go back to reference SousadaSilva AW, Vranken WF. ACPYPE—antechamber python parser interface. BMC Res Notes. 2012;5:367. SousadaSilva AW, Vranken WF. ACPYPE—antechamber python parser interface. BMC Res Notes. 2012;5:367.
50.
go back to reference Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–90. Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–90.
51.
go back to reference Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–7.PubMedPubMedCentral Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–7.PubMedPubMedCentral
52.
go back to reference Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J Mol Graph. 1996;14:33–8.PubMed Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J Mol Graph. 1996;14:33–8.PubMed
53.
go back to reference Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–97.PubMed Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–97.PubMed
54.
go back to reference Musyoka TM, Kanzi AM, Lobb KA, Tastan BÖ. Analysis of non-peptidic compounds as potential malarial inhibitors against plasmodial cysteine proteases via integrated virtual screening workflow. J Biomol Struct Dyn. 2016;34:2084–101.PubMedPubMedCentral Musyoka TM, Kanzi AM, Lobb KA, Tastan BÖ. Analysis of non-peptidic compounds as potential malarial inhibitors against plasmodial cysteine proteases via integrated virtual screening workflow. J Biomol Struct Dyn. 2016;34:2084–101.PubMedPubMedCentral
55.
go back to reference Wang C, Greene D, Xiao L, Qi R, Luo R. Recent developments and applications of the MMPBSA method. Front Mol Biosci. 2018;4:87.PubMedPubMedCentral Wang C, Greene D, Xiao L, Qi R, Luo R. Recent developments and applications of the MMPBSA method. Front Mol Biosci. 2018;4:87.PubMedPubMedCentral
56.
go back to reference Schenk G, Layfield R, Candy JM, Duggleby RG, Nixon PF. Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase. J Mol Evol. 1997;44:552–72.PubMed Schenk G, Layfield R, Candy JM, Duggleby RG, Nixon PF. Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase. J Mol Evol. 1997;44:552–72.PubMed
57.
go back to reference Faya N, Penkler DL, Tastan BÖ. Human, vector and parasite Hsp90 proteins: a comparative bioinformatics analysis. FEBS Open Bio. 2015;5:916–27.PubMedPubMedCentral Faya N, Penkler DL, Tastan BÖ. Human, vector and parasite Hsp90 proteins: a comparative bioinformatics analysis. FEBS Open Bio. 2015;5:916–27.PubMedPubMedCentral
58.
go back to reference Nyamai DW, Tastan BÖ. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J. 2019;18:34.PubMedPubMedCentral Nyamai DW, Tastan BÖ. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J. 2019;18:34.PubMedPubMedCentral
59.
go back to reference Gnémé A, Guelbéogo WM, Riehle MM, Tiono AB, Diarra A, Kabré GB, et al. Plasmodium species occurrence, temporal distribution and interaction in a child-aged population in rural Burkina Faso. Malar J. 2013;12:67.PubMedPubMedCentral Gnémé A, Guelbéogo WM, Riehle MM, Tiono AB, Diarra A, Kabré GB, et al. Plasmodium species occurrence, temporal distribution and interaction in a child-aged population in rural Burkina Faso. Malar J. 2013;12:67.PubMedPubMedCentral
60.
go back to reference Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WAM, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 2014;12:86.PubMedPubMedCentral Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WAM, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 2014;12:86.PubMedPubMedCentral
61.
go back to reference Schwarz R, Dayhoff M. Matrices for detecting distant relationships. In: Dayhoff M, editor. Atlas of protein sequences. Washington: National Biomedical Research Foundation; 1979. p. 353–8. Schwarz R, Dayhoff M. Matrices for detecting distant relationships. In: Dayhoff M, editor. Atlas of protein sequences. Washington: National Biomedical Research Foundation; 1979. p. 353–8.
62.
go back to reference Fidler DR, Murphy SE, Courtis K, Antonoudiou P, El-Tohamy R, Ient J, et al. Using HHsearch to tackle proteins of unknown function: a pilot study with PH domains. Traffic. 2016;17:1214–26.PubMedPubMedCentral Fidler DR, Murphy SE, Courtis K, Antonoudiou P, El-Tohamy R, Ient J, et al. Using HHsearch to tackle proteins of unknown function: a pilot study with PH domains. Traffic. 2016;17:1214–26.PubMedPubMedCentral
64.
go back to reference Ross C, Knox C, Tastan BÖ. Interacting motif networks located in hotspots associated with RNA release are conserved in Enterovirus capsids. FEBS Lett. 2017;591:1687–701.PubMed Ross C, Knox C, Tastan BÖ. Interacting motif networks located in hotspots associated with RNA release are conserved in Enterovirus capsids. FEBS Lett. 2017;591:1687–701.PubMed
65.
go back to reference Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, et al. Attributes of short linear motifs. Mol BioSyst. 2012;8:268–81.PubMed Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, et al. Attributes of short linear motifs. Mol BioSyst. 2012;8:268–81.PubMed
66.
go back to reference Costelloe SJ, Ward JM, Dalby PA. Evolutionary analysis of the TPP-dependent enzyme family. J Mol Evol. 2008;66:36–49.PubMed Costelloe SJ, Ward JM, Dalby PA. Evolutionary analysis of the TPP-dependent enzyme family. J Mol Evol. 2008;66:36–49.PubMed
67.
go back to reference Hulo N. The PROSITE database. Nucleic Acids Res. 2006;34:D227–30.PubMed Hulo N. The PROSITE database. Nucleic Acids Res. 2006;34:D227–30.PubMed
68.
go back to reference Hawkins CF, Borges A, Perham RN. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 1989;255:77–82.PubMed Hawkins CF, Borges A, Perham RN. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 1989;255:77–82.PubMed
69.
go back to reference Dell’Agli M, Giavarini F, Ferraboschi P, Galli G, Bosisio E. Determination of aloesin and aloeresin A for the detection of aloe in beverages. J Agric Food Chem. 2007;55:3363–7.PubMed Dell’Agli M, Giavarini F, Ferraboschi P, Galli G, Bosisio E. Determination of aloesin and aloeresin A for the detection of aloe in beverages. J Agric Food Chem. 2007;55:3363–7.PubMed
70.
go back to reference Rout S, Mahapatra RK. In silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target. Bioorg Med Chem. 2019;27:2553–71.PubMed Rout S, Mahapatra RK. In silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target. Bioorg Med Chem. 2019;27:2553–71.PubMed
71.
go back to reference Ríos-Soto L, Avitia-Domínguez C, Sierra-Campos E, Valdez-Solana M, Cisneros-Martínez J, Palacio-Gastellum MG, et al. Virtual screening, molecular dynamics and ADME-Tox tools for finding potential inhibitors of phosphoglycerate mutase 1 from Plasmodium falciparum. Curr Top Med Chem. 2018;18:1610–7.PubMed Ríos-Soto L, Avitia-Domínguez C, Sierra-Campos E, Valdez-Solana M, Cisneros-Martínez J, Palacio-Gastellum MG, et al. Virtual screening, molecular dynamics and ADME-Tox tools for finding potential inhibitors of phosphoglycerate mutase 1 from Plasmodium falciparum. Curr Top Med Chem. 2018;18:1610–7.PubMed
72.
go back to reference Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E). Better ligands and decoys for better benchmarking. J Med Chem. 2012;55:6582–94.PubMedPubMedCentral Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E). Better ligands and decoys for better benchmarking. J Med Chem. 2012;55:6582–94.PubMedPubMedCentral
75.
76.
go back to reference Musyoka T, Bishop ÖT. South African Abietane diterpenoids and their analogs as potential antimalarials: novel insights from hybrid computational approaches. Molecules. 2019;24:4036.PubMedCentral Musyoka T, Bishop ÖT. South African Abietane diterpenoids and their analogs as potential antimalarials: novel insights from hybrid computational approaches. Molecules. 2019;24:4036.PubMedCentral
77.
go back to reference Roche O, Schneider P, Zuegge J, Guba W, Kansy M, Alanine A, et al. Development of a virtual screening method for identification of “frequent hitters” in compound libraries. J Med Chem. 2002;45:137–42.PubMed Roche O, Schneider P, Zuegge J, Guba W, Kansy M, Alanine A, et al. Development of a virtual screening method for identification of “frequent hitters” in compound libraries. J Med Chem. 2002;45:137–42.PubMed
78.
go back to reference Eloff JN, Jäger AK, Van Staden J. The stability and the relationship between anti-inflammatory activity and antibacterial properties of southern African Combretum species. S Afr J Sci. 2001;97:291–3. Eloff JN, Jäger AK, Van Staden J. The stability and the relationship between anti-inflammatory activity and antibacterial properties of southern African Combretum species. S Afr J Sci. 2001;97:291–3.
80.
go back to reference van Heerden FR, Viljoen AM, van Wyk B-E. 6′-O-Coumaroylaloesin from Aloe castanea—a taxonomic marker for Aloe section Anguialoe. Phytochemistry. 2000;55:117–20.PubMed van Heerden FR, Viljoen AM, van Wyk B-E. 6′-O-Coumaroylaloesin from Aloe castanea—a taxonomic marker for Aloe section Anguialoe. Phytochemistry. 2000;55:117–20.PubMed
81.
go back to reference Asres K, Girma B, Bisrat D. Antimalarial evaluation of the leaf latex of Aloe citrina and its major constituent. Anc Sci Life. 2015;34:142.PubMedPubMedCentral Asres K, Girma B, Bisrat D. Antimalarial evaluation of the leaf latex of Aloe citrina and its major constituent. Anc Sci Life. 2015;34:142.PubMedPubMedCentral
82.
go back to reference Zhao H, Caflisch A. Molecular dynamics in drug design. Eur J Med Chem. 2015;91:4–14.PubMed Zhao H, Caflisch A. Molecular dynamics in drug design. Eur J Med Chem. 2015;91:4–14.PubMed
83.
84.
go back to reference Malabanan MM, Amyes TL, Richard JP. A role for flexible loops in enzyme catalysis. Curr Opin Struct Biol. 2010;20:702–10.PubMedPubMedCentral Malabanan MM, Amyes TL, Richard JP. A role for flexible loops in enzyme catalysis. Curr Opin Struct Biol. 2010;20:702–10.PubMedPubMedCentral
85.
go back to reference Yu H, Yan Y, Zhang C, Dalby PA. Two strategies to engineer flexible loops for improved enzyme thermostability. Sci Rep. 2017;7:41212.PubMedPubMedCentral Yu H, Yan Y, Zhang C, Dalby PA. Two strategies to engineer flexible loops for improved enzyme thermostability. Sci Rep. 2017;7:41212.PubMedPubMedCentral
86.
go back to reference Hasan MA, Mazumder MHH, Chowdhury AS, Datta A, Khan MA. Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. Source Code Biol Med. 2015;10:7.PubMedPubMedCentral Hasan MA, Mazumder MHH, Chowdhury AS, Datta A, Khan MA. Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. Source Code Biol Med. 2015;10:7.PubMedPubMedCentral
87.
go back to reference Fitch CA, Platzer G, Okon M, Garcia-Moreno EB, McIntosh LP. Arginine: Its pK a value revisited. Protein Sci. 2015;24:752–61.PubMedPubMedCentral Fitch CA, Platzer G, Okon M, Garcia-Moreno EB, McIntosh LP. Arginine: Its pK a value revisited. Protein Sci. 2015;24:752–61.PubMedPubMedCentral
Metadata
Title
Characterisation of plasmodial transketolases and identification of potential inhibitors: an in silico study
Authors
Rita Afriyie Boateng
Özlem Tastan Bishop
Thommas Mutemi Musyoka
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03512-1

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue