Skip to main content
Top
Published in: Malaria Journal 1/2020

01-12-2020 | Plasmodium Falciparum | Review

Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of Plasmodium falciparum

Authors: Ankita Behl, Vikash Kumar, Maxim Shevtsov, Shailja Singh

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

The cold shock domain (CSD) forms the hallmark of the cold shock protein family that provides the characteristic feature of binding with nucleic acids. While much of the information is available on bacterial, plants and human cold shock proteins, their existence and functions in the malaria parasite remains undefined. In the present review, the available information on functions of well-characterized cold shock protein members in different organisms has been collected and an attempt was made to identify the presence and role of cold shock proteins in malaria parasite. A single Plasmodium falciparum cold shock protein (PfCoSP) was found in P. falciparum which is reported to be essential for parasite survival. Essentiality of PfCoSP underscores its importance in malaria parasite life cycle. In silico tools were used to predict the features of PfCoSP and to identify its homologues in bacteria, plants, humans, and other Plasmodium species. Modelled structures of PfCoSP and its homologues in Plasmodium species were compared with human cold shock protein ‘YBOX-1’ (Y-box binding protein 1) that provide important insights into their functioning. PfCoSP model was subjected to docking with B-form DNA and RNA to reveal a number of residues crucial for their interaction. Transcriptome analysis and motifs identified in PfCoSP implicate its role in controlling gene expression at gametocyte, ookinete and asexual blood stages of malaria parasite. Overall, this review emphasizes the functional diversity of the cold shock protein family by discussing their known roles in gene expression regulation, cold acclimation, developmental processes like flowering transition, and flower and seed development, and probable function in gametocytogenesis in case of malaria parasite. This enables readers to view the cold shock protein family comprehensively.
Literature
1.
go back to reference Yamanaka K, Fang L, Inouye M. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol. 1998;27:247–55.CrossRefPubMed Yamanaka K, Fang L, Inouye M. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol. 1998;27:247–55.CrossRefPubMed
2.
4.
go back to reference Phadtare S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol. 2004;6:125–36.PubMed Phadtare S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol. 2004;6:125–36.PubMed
5.
go back to reference Wolffe AP, Tafuri S, Ranjan M, Familari M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 1992;4:290–8.PubMed Wolffe AP, Tafuri S, Ranjan M, Familari M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 1992;4:290–8.PubMed
6.
go back to reference Lindquist JA, Brandt S, Bernhardt A, Zhu C, Mertens PR. The role of cold shock domain proteins in inflammatory diseases. J Mol Med. 2014;92:207–16.CrossRefPubMed Lindquist JA, Brandt S, Bernhardt A, Zhu C, Mertens PR. The role of cold shock domain proteins in inflammatory diseases. J Mol Med. 2014;92:207–16.CrossRefPubMed
7.
go back to reference Brandt S, Raffetseder U, Djudjaj S, Schreiter A, Kadereit B, Michele M, et al. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur J Cell Biol. 2012;91:464–71.CrossRefPubMed Brandt S, Raffetseder U, Djudjaj S, Schreiter A, Kadereit B, Michele M, et al. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur J Cell Biol. 2012;91:464–71.CrossRefPubMed
8.
go back to reference Wolffe AP. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. BioEssays. 1994;16:245–51.CrossRefPubMed Wolffe AP. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. BioEssays. 1994;16:245–51.CrossRefPubMed
9.
go back to reference Jiang W, Hou Y, Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem. 1997;272:196–202.CrossRefPubMed Jiang W, Hou Y, Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem. 1997;272:196–202.CrossRefPubMed
10.
go back to reference Bae W, Xia B, Inouye M, Severinov K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA. 2000;97:7784–9.CrossRefPubMedPubMedCentral Bae W, Xia B, Inouye M, Severinov K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA. 2000;97:7784–9.CrossRefPubMedPubMedCentral
11.
go back to reference Phadtare S, Inouye M, Severinov K. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem. 2002;277:7239–45.CrossRefPubMed Phadtare S, Inouye M, Severinov K. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem. 2002;277:7239–45.CrossRefPubMed
12.
13.
go back to reference Gottesman S. Chilled in translation: adapting to bacterial climate change. Mol Cell. 2018;70:193–4.CrossRefPubMed Gottesman S. Chilled in translation: adapting to bacterial climate change. Mol Cell. 2018;70:193–4.CrossRefPubMed
14.
go back to reference Jin B, Jeong KW, Kim Y. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochem Biophys Res Commun. 2014;451:402–7.CrossRefPubMed Jin B, Jeong KW, Kim Y. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochem Biophys Res Commun. 2014;451:402–7.CrossRefPubMed
15.
go back to reference Perl D, Welker C, Schindler T, Schröder K, Marahiel MA, Jaenicke R, Schmid FX. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat Struct Biol. 1998;5:229–35.CrossRefPubMed Perl D, Welker C, Schindler T, Schröder K, Marahiel MA, Jaenicke R, Schmid FX. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat Struct Biol. 1998;5:229–35.CrossRefPubMed
16.
go back to reference Lopez MM, Yutani K, Makhatadze GI. Interactions of the major cold shock protein of Bacillus subtilis CspB with single-stranded DNA templates of different base composition. J Biol Chem. 1999;274:33601–8.CrossRefPubMed Lopez MM, Yutani K, Makhatadze GI. Interactions of the major cold shock protein of Bacillus subtilis CspB with single-stranded DNA templates of different base composition. J Biol Chem. 1999;274:33601–8.CrossRefPubMed
17.
go back to reference Lopez MM, Makhatadze GI. Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates. Biochim Biophys Acta Prot Struct Mol Enzym. 2000;1479:196–202.CrossRef Lopez MM, Makhatadze GI. Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates. Biochim Biophys Acta Prot Struct Mol Enzym. 2000;1479:196–202.CrossRef
18.
go back to reference Lopez MM, Yutani K, Makhatadze GI. Interactions of the Cold Shock Protein CspB from Bacillus subtilis with Single-stranded DNA. Importance of the T base content and position within the template. J Biol Chem. 2001;276:15511–8.CrossRefPubMed Lopez MM, Yutani K, Makhatadze GI. Interactions of the Cold Shock Protein CspB from Bacillus subtilis with Single-stranded DNA. Importance of the T base content and position within the template. J Biol Chem. 2001;276:15511–8.CrossRefPubMed
19.
go back to reference Zeeb M, Balbach J. Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization. Protein Sci. 2003;12:112–23.CrossRefPubMedPubMedCentral Zeeb M, Balbach J. Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization. Protein Sci. 2003;12:112–23.CrossRefPubMedPubMedCentral
21.
go back to reference Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994;265:615–21.CrossRefPubMed Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994;265:615–21.CrossRefPubMed
22.
go back to reference Schröder K, Graumann P, Schnuchel A, Holak TA, Marahiel MA. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol. 1995;16:699–708.CrossRefPubMed Schröder K, Graumann P, Schnuchel A, Holak TA, Marahiel MA. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol. 1995;16:699–708.CrossRefPubMed
23.
go back to reference Charollais J, Dreyfus M, Iost I. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res. 2004;32:2751–9.CrossRefPubMedPubMedCentral Charollais J, Dreyfus M, Iost I. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res. 2004;32:2751–9.CrossRefPubMedPubMedCentral
24.
go back to reference Phadtare S. Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNase and relevance to low-temperature RNA metabolism. Genes Cells. 2012;17:850–74.CrossRefPubMedPubMedCentral Phadtare S. Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNase and relevance to low-temperature RNA metabolism. Genes Cells. 2012;17:850–74.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Yamanaka K, Mitani T, Ogura T, Niki H, Hiraga S. Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Mol Microbiol. 1994;13:301–12.CrossRefPubMed Yamanaka K, Mitani T, Ogura T, Niki H, Hiraga S. Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Mol Microbiol. 1994;13:301–12.CrossRefPubMed
27.
go back to reference Etchegaray JP, Jones PG, Inouye M. Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli. Genes Cells. 1996;1:171–8.CrossRefPubMed Etchegaray JP, Jones PG, Inouye M. Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli. Genes Cells. 1996;1:171–8.CrossRefPubMed
28.
go back to reference Nakashima K, Kanamaru K, Mizuno T, Horikoshi K. A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol. 1996;178:2994–7.CrossRefPubMedPubMedCentral Nakashima K, Kanamaru K, Mizuno T, Horikoshi K. A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol. 1996;178:2994–7.CrossRefPubMedPubMedCentral
29.
go back to reference Wang N, Yamanaka K, Inouye M. CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol. 1999;181:1603–9.CrossRefPubMedPubMedCentral Wang N, Yamanaka K, Inouye M. CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol. 1999;181:1603–9.CrossRefPubMedPubMedCentral
30.
go back to reference Uppal S, Rao Akkipeddi VS, Jawali N. Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5′-untranslated region. FEMS Microbiol Lett. 2008;279:83–91.CrossRefPubMed Uppal S, Rao Akkipeddi VS, Jawali N. Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5′-untranslated region. FEMS Microbiol Lett. 2008;279:83–91.CrossRefPubMed
31.
go back to reference Xia B, Ke H, Inouye M. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol. 2001;40:179–88.CrossRefPubMed Xia B, Ke H, Inouye M. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol. 2001;40:179–88.CrossRefPubMed
32.
go back to reference Yamanaka K, Inouye M. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol. 1997;179:5126–30.CrossRefPubMedPubMedCentral Yamanaka K, Inouye M. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol. 1997;179:5126–30.CrossRefPubMedPubMedCentral
33.
go back to reference Yamanaka K, Zheng W, Crooke E, Wang YH, Inouye M. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol Microbiol. 2001;39:1572–84.CrossRefPubMed Yamanaka K, Zheng W, Crooke E, Wang YH, Inouye M. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol Microbiol. 2001;39:1572–84.CrossRefPubMed
34.
go back to reference Czapski TR, Trun N. Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Gene. 2014;547:91–7.CrossRefPubMed Czapski TR, Trun N. Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Gene. 2014;547:91–7.CrossRefPubMed
35.
go back to reference Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol. 2001;183:1205–14.CrossRefPubMedPubMedCentral Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol. 2001;183:1205–14.CrossRefPubMedPubMedCentral
36.
go back to reference Kim Y, Wang X, Zhang XS, Grigoriu S, Page R, Peti W, Wood TK. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol. 2010;12:1105–21.CrossRefPubMedPubMedCentral Kim Y, Wang X, Zhang XS, Grigoriu S, Page R, Peti W, Wood TK. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol. 2010;12:1105–21.CrossRefPubMedPubMedCentral
37.
go back to reference Li HT, Liu H, Gao XS, Zhang H. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress. Biochem and Biophys Res Commun. 2009;382:637–41.CrossRef Li HT, Liu H, Gao XS, Zhang H. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress. Biochem and Biophys Res Commun. 2009;382:637–41.CrossRef
39.
go back to reference Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, et al. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell. 2010;37:21–33.CrossRefPubMed Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, et al. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell. 2010;37:21–33.CrossRefPubMed
40.
go back to reference Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R. Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. Biochem Biophys Res Commun. 2010;399:336–40.CrossRefPubMed Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R. Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. Biochem Biophys Res Commun. 2010;399:336–40.CrossRefPubMed
41.
go back to reference Mitta M, Fang L, Inouye M. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol. 1997;26:321–35.CrossRefPubMed Mitta M, Fang L, Inouye M. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol. 1997;26:321–35.CrossRefPubMed
42.
go back to reference Phadtare S, Severinov K. Extended−10 motif is critical for activity of the cspA promoter but does not contribute to low-temperature transcription. J Bacteriol. 2005;187:6584–9.CrossRefPubMedPubMedCentral Phadtare S, Severinov K. Extended−10 motif is critical for activity of the cspA promoter but does not contribute to low-temperature transcription. J Bacteriol. 2005;187:6584–9.CrossRefPubMedPubMedCentral
43.
go back to reference Graumann P, Wendrich TM, Weber MH, Schröder K, Marahiel MA. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol. 1997;25:741–56.CrossRefPubMed Graumann P, Wendrich TM, Weber MH, Schröder K, Marahiel MA. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol. 1997;25:741–56.CrossRefPubMed
44.
go back to reference Kremer W, Schuler B, Harrieder S, Geyer M, Gronwald W, Welker C, et al. Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. Eur J Biochem. 2001;268:2527–39.CrossRefPubMed Kremer W, Schuler B, Harrieder S, Geyer M, Gronwald W, Welker C, et al. Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. Eur J Biochem. 2001;268:2527–39.CrossRefPubMed
46.
go back to reference Schindelin H, Marahiel MA, Heinemann U. Universal nucleic acid-binding domain revealed by crystal structure of the B subtilis major cold-shock protein. Nature. 1993;364:164–8.CrossRefPubMed Schindelin H, Marahiel MA, Heinemann U. Universal nucleic acid-binding domain revealed by crystal structure of the B subtilis major cold-shock protein. Nature. 1993;364:164–8.CrossRefPubMed
47.
go back to reference Schindelin H, Jiang W, Inouye M, Heinemann U. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA. 1994;91:5119–23.CrossRefPubMedPubMedCentral Schindelin H, Jiang W, Inouye M, Heinemann U. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA. 1994;91:5119–23.CrossRefPubMedPubMedCentral
49.
go back to reference Lei M, Podell ER, Cech TR. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol. 2004;11:1223–9.CrossRefPubMed Lei M, Podell ER, Cech TR. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol. 2004;11:1223–9.CrossRefPubMed
50.
go back to reference Mitton-Fry RM, Anderson EM, Theobald DL, Glustrom LW, Wuttke DS. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J Mol Biol. 2004;338:241–55.CrossRefPubMed Mitton-Fry RM, Anderson EM, Theobald DL, Glustrom LW, Wuttke DS. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J Mol Biol. 2004;338:241–55.CrossRefPubMed
51.
go back to reference Lee J, Jeong KW, Jin B, Ryu KS, Kim EH, Ahn JH, Kim Y. Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium. Biochemistry. 2013;52:2492–504.CrossRefPubMed Lee J, Jeong KW, Jin B, Ryu KS, Kim EH, Ahn JH, Kim Y. Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium. Biochemistry. 2013;52:2492–504.CrossRefPubMed
53.
go back to reference Didier DK, Schiffenbauer J, Woulfe SL, Zacheis M, Schwartz BD. Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc Natl Acad Sci USA. 1988;85:7322–6.CrossRefPubMedPubMedCentral Didier DK, Schiffenbauer J, Woulfe SL, Zacheis M, Schwartz BD. Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc Natl Acad Sci USA. 1988;85:7322–6.CrossRefPubMedPubMedCentral
54.
go back to reference Horwitz EM, Maloney KA, Ley TJ. A human protein containing a" cold shock" domain binds specifically to H-DNA upstream from the human gamma-globin genes. J Biol Chem. 1994;269:14130–9.PubMed Horwitz EM, Maloney KA, Ley TJ. A human protein containing a" cold shock" domain binds specifically to H-DNA upstream from the human gamma-globin genes. J Biol Chem. 1994;269:14130–9.PubMed
55.
go back to reference Chen CY, Gherzi R, Andersen JS, Gaietta G, Jürchott K, Royer HD, et al. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Gene Dev. 2000;14:1236–48.PubMedPubMedCentral Chen CY, Gherzi R, Andersen JS, Gaietta G, Jürchott K, Royer HD, et al. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Gene Dev. 2000;14:1236–48.PubMedPubMedCentral
56.
go back to reference Capowski EE, Esnault S, Bhattacharya S, Malter JS. Y box-binding factor promotes eosinophil survival by stabilizing granulocyte-macrophage colony-stimulating factor mRNA. J Immunol. 2001;167:5970–6.CrossRefPubMed Capowski EE, Esnault S, Bhattacharya S, Malter JS. Y box-binding factor promotes eosinophil survival by stabilizing granulocyte-macrophage colony-stimulating factor mRNA. J Immunol. 2001;167:5970–6.CrossRefPubMed
57.
go back to reference Gaudreault I, Guay D, Lebel M. YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res. 2004;32:316–27.CrossRefPubMedPubMedCentral Gaudreault I, Guay D, Lebel M. YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res. 2004;32:316–27.CrossRefPubMedPubMedCentral
58.
go back to reference Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, et al. Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol. 2008;28:7066–80.CrossRefPubMedPubMedCentral Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, et al. Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol. 2008;28:7066–80.CrossRefPubMedPubMedCentral
59.
go back to reference Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21:978–90.CrossRefPubMed Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21:978–90.CrossRefPubMed
60.
go back to reference Ohga T, Uchiumi T, Makino Y, Koike K, Wada M, Kuwano M, et al. Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene. J Biol Chem. 1998;273:5997–6000.CrossRefPubMed Ohga T, Uchiumi T, Makino Y, Koike K, Wada M, Kuwano M, et al. Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene. J Biol Chem. 1998;273:5997–6000.CrossRefPubMed
61.
go back to reference Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. Biochem. 2011;76:1402–33. Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. Biochem. 2011;76:1402–33.
62.
go back to reference Koike K, Uchiumi T, Ohga T, Toh S, Wada M, Kohno K, et al. Nuclear translocation of the Y-box binding protein by ultraviolet irradiation. FEBS Lett. 1997;417:390–4.CrossRefPubMed Koike K, Uchiumi T, Ohga T, Toh S, Wada M, Kohno K, et al. Nuclear translocation of the Y-box binding protein by ultraviolet irradiation. FEBS Lett. 1997;417:390–4.CrossRefPubMed
63.
go back to reference Bargou RC, Jürchott K, Wagener C, Bergmann S, Metzner S, Bommert K, et al. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med. 1997;3:447–50.CrossRefPubMed Bargou RC, Jürchott K, Wagener C, Bergmann S, Metzner S, Bommert K, et al. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med. 1997;3:447–50.CrossRefPubMed
64.
go back to reference Oda Y, Ohishi Y, Saito T, Hinoshita E, Uchiumi T, Kinukawa N, et al. Nuclear expression of Y-box-binding protein-1 correlates with P-glycoprotein and topoisomerase II alpha expression, and with poor prognosis in synovial sarcoma. J Pathol. 2003;199:251–8.CrossRefPubMed Oda Y, Ohishi Y, Saito T, Hinoshita E, Uchiumi T, Kinukawa N, et al. Nuclear expression of Y-box-binding protein-1 correlates with P-glycoprotein and topoisomerase II alpha expression, and with poor prognosis in synovial sarcoma. J Pathol. 2003;199:251–8.CrossRefPubMed
65.
go back to reference Pfeiffer JR, McAvoy BL, Fecteau RE, Deleault KM, Brooks SA. CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol Cell Biol. 2011;31:277–86.CrossRefPubMed Pfeiffer JR, McAvoy BL, Fecteau RE, Deleault KM, Brooks SA. CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol Cell Biol. 2011;31:277–86.CrossRefPubMed
66.
go back to reference Groblewski GE, Yoshida M, Bragado MJ, Ernst SA, Leykam J, Williams JA. Purification and characterization of a novel physiological substrate for calcineurin in mammalian cells. J Biol Chem. 1998;273:22738–44.CrossRefPubMed Groblewski GE, Yoshida M, Bragado MJ, Ernst SA, Leykam J, Williams JA. Purification and characterization of a novel physiological substrate for calcineurin in mammalian cells. J Biol Chem. 1998;273:22738–44.CrossRefPubMed
67.
go back to reference Castiglia D, Scaturro M, Nastasi T, Cestelli A, Di Liegro I. PIPPin, a putative RNA-binding protein specifically expressed in the rat brain. Biochem Biophys Res Commun. 1996;218:390–4.CrossRefPubMed Castiglia D, Scaturro M, Nastasi T, Cestelli A, Di Liegro I. PIPPin, a putative RNA-binding protein specifically expressed in the rat brain. Biochem Biophys Res Commun. 1996;218:390–4.CrossRefPubMed
68.
go back to reference Nastasi T, Scaturro M, Bellafiore M, Raimondi L, Beccari S, Cestelli A, et al. PIPPin is a brain-specific protein that contains a cold-shock domain and binds specifically to H1 and H33 mRNAs. J Biol Chem. 1999;274:24087–93.CrossRefPubMed Nastasi T, Scaturro M, Bellafiore M, Raimondi L, Beccari S, Cestelli A, et al. PIPPin is a brain-specific protein that contains a cold-shock domain and binds specifically to H1 and H33 mRNAs. J Biol Chem. 1999;274:24087–93.CrossRefPubMed
69.
go back to reference Di Liegro CM, Schiera G, Proia P, Saladino P, Di Liegro I. Identification in the rat brain of a set of nuclear proteins interacting with H1 mRNA. Neuroscience. 2013;229:71–6.CrossRefPubMed Di Liegro CM, Schiera G, Proia P, Saladino P, Di Liegro I. Identification in the rat brain of a set of nuclear proteins interacting with H1 mRNA. Neuroscience. 2013;229:71–6.CrossRefPubMed
70.
go back to reference Anderson EC, Catnaigh PÓ. Regulation of the expression and activity of Unr in mammalian cells. Biochem Soc Trans. 2015;43:1241–6.CrossRefPubMed Anderson EC, Catnaigh PÓ. Regulation of the expression and activity of Unr in mammalian cells. Biochem Soc Trans. 2015;43:1241–6.CrossRefPubMed
71.
go back to reference Jeffers M, Paciucci R, Pellicer A. Characterization of unr; a gene closely linked to N-ras. Nucleic Acids Res. 1990;18:4891.PubMedPubMedCentral Jeffers M, Paciucci R, Pellicer A. Characterization of unr; a gene closely linked to N-ras. Nucleic Acids Res. 1990;18:4891.PubMedPubMedCentral
72.
go back to reference Jeffers M, Pellicer A. Multiple intragenic elements regulate the expression of the murine N-ras gene. Oncogene. 1992;7:2115–23.PubMed Jeffers M, Pellicer A. Multiple intragenic elements regulate the expression of the murine N-ras gene. Oncogene. 1992;7:2115–23.PubMed
73.
go back to reference Jacquemin-Sablon H, Dautry F. Organization of the unrl N-ras locus: characterization of the promoter region of the human unr gene. Nucleic Acids Res. 1992;20:6355–61.CrossRefPubMedPubMedCentral Jacquemin-Sablon H, Dautry F. Organization of the unrl N-ras locus: characterization of the promoter region of the human unr gene. Nucleic Acids Res. 1992;20:6355–61.CrossRefPubMedPubMedCentral
74.
go back to reference Jacquemin-Sablon H, Triqueneaux G, Deschamps S, le Maire M, Doniger J, Dautry F. Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. Nucleic Acids Res. 1994;22:2643–50.CrossRefPubMedPubMedCentral Jacquemin-Sablon H, Triqueneaux G, Deschamps S, le Maire M, Doniger J, Dautry F. Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. Nucleic Acids Res. 1994;22:2643–50.CrossRefPubMedPubMedCentral
75.
go back to reference Doniger J, Landsman D, Gonda MA, Wistow G. The product of unr, the highly conserved gene upstream of N-ras, contains multiple repeats similar to the cold-shock domain (CSD), a putative DNA-binding motif. New Biol. 1992;4:389–95.PubMed Doniger J, Landsman D, Gonda MA, Wistow G. The product of unr, the highly conserved gene upstream of N-ras, contains multiple repeats similar to the cold-shock domain (CSD), a putative DNA-binding motif. New Biol. 1992;4:389–95.PubMed
78.
go back to reference Jin J, Jing W, Lei XX, Feng C, Peng S, Boris-Lawrie K, Huang Y. Evidence that Lin28 stimulates translation by recruiting RNA helicase A to polysomes. Nucleic Acids Res. 2011;39:3724–34.CrossRefPubMedPubMedCentral Jin J, Jing W, Lei XX, Feng C, Peng S, Boris-Lawrie K, Huang Y. Evidence that Lin28 stimulates translation by recruiting RNA helicase A to polysomes. Nucleic Acids Res. 2011;39:3724–34.CrossRefPubMedPubMedCentral
79.
go back to reference Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell. 2008;32:276–84.CrossRefPubMed Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell. 2008;32:276–84.CrossRefPubMed
80.
go back to reference Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138:696–708.CrossRefPubMed Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138:696–708.CrossRefPubMed
81.
go back to reference Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147:1066–79.CrossRefPubMedPubMedCentral Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147:1066–79.CrossRefPubMedPubMedCentral
83.
go back to reference Karlson D, Nakaminami K, Toyomasu T, Imai R. A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem. 2002;277:35248–56.CrossRefPubMed Karlson D, Nakaminami K, Toyomasu T, Imai R. A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem. 2002;277:35248–56.CrossRefPubMed
84.
go back to reference Nakaminami K, Sasaki K, Kajita S, Takeda H, Karlson D, Ohgi K, Imai R. Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein. FEBS Lett. 2005;579:4887–91.CrossRefPubMed Nakaminami K, Sasaki K, Kajita S, Takeda H, Karlson D, Ohgi K, Imai R. Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein. FEBS Lett. 2005;579:4887–91.CrossRefPubMed
85.
go back to reference Nakaminami K, Karlson DT, Imai R. Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA. 2006;103:10122–7.CrossRefPubMedPubMedCentral Nakaminami K, Karlson DT, Imai R. Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA. 2006;103:10122–7.CrossRefPubMedPubMedCentral
86.
go back to reference Radkova M, Vítámvás P, Sasaki K, Imai R. Development-and cold-regulated accumulation of cold shock domain proteins in wheat. Plant Physiol Biochem. 2014;77:44–8.CrossRefPubMed Radkova M, Vítámvás P, Sasaki K, Imai R. Development-and cold-regulated accumulation of cold shock domain proteins in wheat. Plant Physiol Biochem. 2014;77:44–8.CrossRefPubMed
87.
88.
go back to reference Park SJ, Kwak KJ, Oh TR, Kim YO, Kang H. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol. 2009;50:869–78.CrossRefPubMed Park SJ, Kwak KJ, Oh TR, Kim YO, Kang H. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol. 2009;50:869–78.CrossRefPubMed
89.
go back to reference Juntawong P, Sorenson R, Bailey-Serres J. Cold shock protein 1 chaperones mRNA s during translation in Arabidopsis thaliana. Plant J. 2013;74:1016–28.CrossRefPubMed Juntawong P, Sorenson R, Bailey-Serres J. Cold shock protein 1 chaperones mRNA s during translation in Arabidopsis thaliana. Plant J. 2013;74:1016–28.CrossRefPubMed
90.
go back to reference Fusaro AF, Bocca SN, Ramos RL, Barrôco RM, Magioli C, Jorge VC, et al. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta. 2007;225:1339–51.CrossRefPubMed Fusaro AF, Bocca SN, Ramos RL, Barrôco RM, Magioli C, Jorge VC, et al. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta. 2007;225:1339–51.CrossRefPubMed
91.
go back to reference Sasaki K, Kim MH, Imai R. Arabidopsis cold shock domain protein2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun. 2007;364:633–8.CrossRefPubMed Sasaki K, Kim MH, Imai R. Arabidopsis cold shock domain protein2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun. 2007;364:633–8.CrossRefPubMed
92.
go back to reference Nakaminami K, Hill K, Perry SE, Sentoku N, Long JA, Karlson DT. Arabidopsis cold shock domain proteins: relationships to floral and silique development. J Exp Bot. 2009;60:1047–62.CrossRefPubMedPubMedCentral Nakaminami K, Hill K, Perry SE, Sentoku N, Long JA, Karlson DT. Arabidopsis cold shock domain proteins: relationships to floral and silique development. J Exp Bot. 2009;60:1047–62.CrossRefPubMedPubMedCentral
94.
go back to reference Chaikam V, Karlson D. Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ. 2008;31:995–1006.CrossRefPubMed Chaikam V, Karlson D. Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ. 2008;31:995–1006.CrossRefPubMed
95.
go back to reference UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.CrossRef UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.CrossRef
96.
go back to reference Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.CrossRefPubMed Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.CrossRefPubMed
97.
go back to reference Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.CrossRefPubMedPubMedCentral Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.CrossRefPubMedPubMedCentral
99.
go back to reference López-Barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-Cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genom. 2011;12:587.CrossRef López-Barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-Cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genom. 2011;12:587.CrossRef
100.
go back to reference Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.CrossRefPubMedPubMedCentral Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.CrossRefPubMedPubMedCentral
102.
go back to reference Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.CrossRefPubMed Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.CrossRefPubMed
103.
go back to reference Bhattacharya D, Cheng J. 3Drefine: Consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins. 2013;81:119–31.CrossRefPubMed Bhattacharya D, Cheng J. 3Drefine: Consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins. 2013;81:119–31.CrossRefPubMed
104.
go back to reference Lovell SC, Davis IW, Arendall WB III, De Bakker PI, Word JM, Prisant MG, et al. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins. 2003;50:437–50.CrossRefPubMed Lovell SC, Davis IW, Arendall WB III, De Bakker PI, Word JM, Prisant MG, et al. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins. 2003;50:437–50.CrossRefPubMed
106.
go back to reference Yang XJ, Zhu H, Mu SR, Wei WJ, Yuan X, Wang M, Liu Y, et al. Crystal structure of a Y-box binding protein 1 (YB-1)–RNA complex reveals key features and residues interacting with RNA. J Biol Chem. 2019;294:10998–1010.CrossRefPubMedPubMedCentral Yang XJ, Zhu H, Mu SR, Wei WJ, Yuan X, Wang M, Liu Y, et al. Crystal structure of a Y-box binding protein 1 (YB-1)–RNA complex reveals key features and residues interacting with RNA. J Biol Chem. 2019;294:10998–1010.CrossRefPubMedPubMedCentral
108.
go back to reference Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45:W365–73.CrossRefPubMedPubMedCentral Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45:W365–73.CrossRefPubMedPubMedCentral
109.
110.
go back to reference Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.PubMed Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.PubMed
112.
go back to reference Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chem Bio Chem. 2011;12:206–22.CrossRefPubMed Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chem Bio Chem. 2011;12:206–22.CrossRefPubMed
113.
go back to reference Levine M, Hoey T. Homeobox proteins as sequence-specific transcription factors. Cell. 1988;55:537–40.CrossRefPubMed Levine M, Hoey T. Homeobox proteins as sequence-specific transcription factors. Cell. 1988;55:537–40.CrossRefPubMed
114.
go back to reference Clayton EL, Minogue S, Waugh MG. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Prog Lipid Res. 2013;52:294–304.CrossRefPubMedPubMedCentral Clayton EL, Minogue S, Waugh MG. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Prog Lipid Res. 2013;52:294–304.CrossRefPubMedPubMedCentral
115.
go back to reference Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol. 2012;198:961–71.CrossRefPubMedPubMedCentral Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol. 2012;198:961–71.CrossRefPubMedPubMedCentral
116.
go back to reference Dearsly AL, Sinden RE, Self IA. Sexual development in malarial parasites: gametocyte production, fertility and infectivity to the mosquito vector. Parasitology. 1990;100:359–68.CrossRefPubMed Dearsly AL, Sinden RE, Self IA. Sexual development in malarial parasites: gametocyte production, fertility and infectivity to the mosquito vector. Parasitology. 1990;100:359–68.CrossRefPubMed
117.
go back to reference Silvestrini F, Bozdech Z, Lanfrancotti A, Di Giulio E, Bultrini E, Picci L, et al. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol Biochem Parasitol. 2005;143:100–10.CrossRefPubMed Silvestrini F, Bozdech Z, Lanfrancotti A, Di Giulio E, Bultrini E, Picci L, et al. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol Biochem Parasitol. 2005;143:100–10.CrossRefPubMed
118.
go back to reference Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou Y, et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol. 2005;143:67–79.CrossRefPubMed Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou Y, et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol. 2005;143:67–79.CrossRefPubMed
Metadata
Title
Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of Plasmodium falciparum
Authors
Ankita Behl
Vikash Kumar
Maxim Shevtsov
Shailja Singh
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03448-6

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue