Skip to main content
Top
Published in: Malaria Journal 1/2020

01-12-2020 | Plasmodium Falciparum | Research

Plasmodium falciparum genetic factors rather than host factors are likely to drive resistance to ACT in Ghana

Authors: Peter Hodoameda, Nancy Odurowah Duah-Quashie, Charles Oheneba Hagan, Sena Matrevi, Benjamin Abuaku, Kwadwo Koram, Neils Ben Quashie

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Artemisinin-based combination therapy (ACT) partner drugs, currently used in Ghana are lumefantrine, amodiaquine and piperaquine. Plasmodium falciparum isolates with reduced susceptibility to these partner drugs may affect treatment outcome. Mutations in pfmdr1 gene is linked to reduced parasite susceptibility to amodiaquine and lumefantrine. In addition, the potency of the partner drugs in vivo depends on the metabolism by the cytochrome P450 (CYP) enzyme in the host. Mutations in the CYP2C8 and CYP3A4 genes are linked to reduced metabolism of amodiaquine and lumefantrine in vitro, respectively. This study investigated the host and parasite genetic factors affecting the susceptibility of the malaria parasite to ACT partner drugs.

Methods

Archived samples from 240 patients age ≤ 9 years participating in anti-malarial drug resistance survey in Ghana, and given artemether with lumefantrine (AL) or artesunate with amodiaquine (AA), were selected and analysed. Polymerase chain reaction (PCR) followed by Sanger sequencing was used to determine the polymorphisms in CYP2C8, CYP3A4 and pfmdr1 genes.

Results

For CYP3A4, all had wild type alleles, suggesting that the hosts are good metabolizers of lumefantrine. For CYP2C8 60% had wild type alleles, 35% heterozygous and 5% homozygous recessive alleles suggesting efficient metabolism of amodiaquine by the hosts. For pfmdr1 gene, at codon 86, 95% were wild type (N86) and 5% mutant (Y86). For codon 184, 36% were wild type (Y184) and 64% mutant (F184) while for codons 1034, 1042 and 1246, 100% (all) were wild type. The high prevalence of N86-F184-D1246 haplotype (NFD) suggest presence of parasites with reduced susceptibility to lumefantrine and not amodiaquine. Delayed clearance was observed in individuals with mutations in the pfmdr1 gene and not cytochrome 450 gene. Both synonymous and non-synonymous mutations were observed in the pfmdr1 at low prevalence.

Conclusion

The outcome of this study indicates that the parasite's genetic factors rather than the host’s are likely to drive resistance to ACT in Ghana.
Appendix
Available only for authorised users
Literature
3.
go back to reference Ministry of Health. Antimalarial drug policy for Ghana. Accra: Ministry of Health; 2009. Ministry of Health. Antimalarial drug policy for Ghana. Accra: Ministry of Health; 2009.
4.
go back to reference White NJ, Nosten F. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007;77(6 Suppl):181–92.PubMed White NJ, Nosten F. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007;77(6 Suppl):181–92.PubMed
5.
go back to reference Ouji M, Augereau J-M, Paloque L, Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: a sword of Damocles in the path toward malaria elimination. Parasite. 2018;25:24.CrossRef Ouji M, Augereau J-M, Paloque L, Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: a sword of Damocles in the path toward malaria elimination. Parasite. 2018;25:24.CrossRef
6.
go back to reference Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–41.CrossRef Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–41.CrossRef
7.
go back to reference Sá JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci USA. 2009;106:18883–9.CrossRef Sá JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci USA. 2009;106:18883–9.CrossRef
8.
go back to reference Sisowath C, Ferreira PE, Bustamante LY, Dahlström S, Mårtensson A, Björkman A, et al. The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Trop Med Int Health. 2007;12:736–42.CrossRef Sisowath C, Ferreira PE, Bustamante LY, Dahlström S, Mårtensson A, Björkman A, et al. The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Trop Med Int Health. 2007;12:736–42.CrossRef
9.
go back to reference Chen N, Chavchich M, Peters JM, Kyle DE, Gatton ML, Cheng Q. Deamplification of pfmdr1-containing amplicon on chromosome 5 in Plasmodium falciparum is associated with reduced resistance to artelinic acid in vitro. Antimicrob Agents Chemother. 2010;54:3395–401.CrossRef Chen N, Chavchich M, Peters JM, Kyle DE, Gatton ML, Cheng Q. Deamplification of pfmdr1-containing amplicon on chromosome 5 in Plasmodium falciparum is associated with reduced resistance to artelinic acid in vitro. Antimicrob Agents Chemother. 2010;54:3395–401.CrossRef
10.
go back to reference Holmgren G, Hamrin J, Svärd J, Mårtensson A, Gil JP, Björkman A. Selection of pfmdr1 mutations after amodiaquine monotherapy and amodiaquine plus artemisinin combination therapy in East Africa. Infect Genet Evol. 2007;7:562–9.CrossRef Holmgren G, Hamrin J, Svärd J, Mårtensson A, Gil JP, Björkman A. Selection of pfmdr1 mutations after amodiaquine monotherapy and amodiaquine plus artemisinin combination therapy in East Africa. Infect Genet Evol. 2007;7:562–9.CrossRef
11.
go back to reference Parikh S, Ouedraogo JB, Goldstein JA, Rosenthal PJ, Kroetz DL. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther. 2007;82:197–203.CrossRef Parikh S, Ouedraogo JB, Goldstein JA, Rosenthal PJ, Kroetz DL. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther. 2007;82:197–203.CrossRef
12.
go back to reference Lefevre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet). Clin Drug Investig. 1999;18:467–80.CrossRef Lefevre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet). Clin Drug Investig. 1999;18:467–80.CrossRef
13.
go back to reference Wu AHB. Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance. Clin Proteomics. 2011;8:1–9.CrossRef Wu AHB. Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance. Clin Proteomics. 2011;8:1–9.CrossRef
14.
go back to reference Ingelman-Sundberg M, Rodriguez-Antona C. Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos Trans R Soc B Biol Sci. 2005;360:1563–70.CrossRef Ingelman-Sundberg M, Rodriguez-Antona C. Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos Trans R Soc B Biol Sci. 2005;360:1563–70.CrossRef
15.
go back to reference Abuaku B, Duah N, Quaye L, Quashie N, Malm K, Plange CB. Therapeutic efficacy of artesunate—amodiaquine and artemether—lumefantrine combinations in the treatment of uncomplicated malaria in two ecological zones in Ghana. Malar J. 2016;15:6.CrossRef Abuaku B, Duah N, Quaye L, Quashie N, Malm K, Plange CB. Therapeutic efficacy of artesunate—amodiaquine and artemether—lumefantrine combinations in the treatment of uncomplicated malaria in two ecological zones in Ghana. Malar J. 2016;15:6.CrossRef
16.
go back to reference Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp. 2012;63:1–14. Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp. 2012;63:1–14.
17.
go back to reference Vinayak S, Alam T, Sem R, Shah NK, Susanti AI, Lim P, et al. Multiple genetic backgrounds of the amplified Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective sweep of 184F mutation in Cambodia. J Infect Dis. 2010;201:1551–600.CrossRef Vinayak S, Alam T, Sem R, Shah NK, Susanti AI, Lim P, et al. Multiple genetic backgrounds of the amplified Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective sweep of 184F mutation in Cambodia. J Infect Dis. 2010;201:1551–600.CrossRef
18.
go back to reference Cavaco I, Stromberg-Norklit J, Kaneko A, Msellem MI, Dahoma M, Ribeiro VL, et al. CYP2C8 polymorphism frequencies among malaria patients in Zanzibar. Eur J Clin Pharmacol. 2005;61:15–8.CrossRef Cavaco I, Stromberg-Norklit J, Kaneko A, Msellem MI, Dahoma M, Ribeiro VL, et al. CYP2C8 polymorphism frequencies among malaria patients in Zanzibar. Eur J Clin Pharmacol. 2005;61:15–8.CrossRef
19.
go back to reference Hodel EM, Ley SD, Qi W, Ariey F, Genton B, Beck H. A microarray-based system for the simultaneous analysis of single nucleotide polymorphisms in human genes involved in the metabolism of anti-malarial drugs. Malar J. 2009;8:285.CrossRef Hodel EM, Ley SD, Qi W, Ariey F, Genton B, Beck H. A microarray-based system for the simultaneous analysis of single nucleotide polymorphisms in human genes involved in the metabolism of anti-malarial drugs. Malar J. 2009;8:285.CrossRef
20.
go back to reference Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet. 2005;76:887–93.CrossRef Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet. 2005;76:887–93.CrossRef
21.
go back to reference Ferreira PE, Holmgren G, Veiga MI, Uhlén P, Kaneko A, Gil JP. PfMDR1: Mechanisms of transport modulation by functional polymorphisms. PLoS ONE. 2011;6:e23875.CrossRef Ferreira PE, Holmgren G, Veiga MI, Uhlén P, Kaneko A, Gil JP. PfMDR1: Mechanisms of transport modulation by functional polymorphisms. PLoS ONE. 2011;6:e23875.CrossRef
22.
go back to reference Bopp S, Magistrado P, Wong W, Schaffner SF, Mukherjee A, Lim P, et al. Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat Commun. 2018;9:1769.CrossRef Bopp S, Magistrado P, Wong W, Schaffner SF, Mukherjee A, Lim P, et al. Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat Commun. 2018;9:1769.CrossRef
23.
go back to reference Duah NO, Matrevi SA, De Souza DK, Binnah DD, Tamakloe MM, Opoku VS, et al. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy. Malar J. 2013;12:377.CrossRef Duah NO, Matrevi SA, De Souza DK, Binnah DD, Tamakloe MM, Opoku VS, et al. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy. Malar J. 2013;12:377.CrossRef
24.
go back to reference Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2012;54:1271–94.CrossRef Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2012;54:1271–94.CrossRef
25.
go back to reference Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Asghar M, Homann MV, et al. Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women. Malar J. 2017;16:267.CrossRef Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Asghar M, Homann MV, et al. Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women. Malar J. 2017;16:267.CrossRef
26.
go back to reference Kiaco K, Rodrigues AS, Rosário V, Gil JP, Lopes D. The drug transporter ABCB1 c.3435C> T SNP influences artemether-lumefantrine treatment outcome. Malar J. 2017;16:383.CrossRef Kiaco K, Rodrigues AS, Rosário V, Gil JP, Lopes D. The drug transporter ABCB1 c.3435C> T SNP influences artemether-lumefantrine treatment outcome. Malar J. 2017;16:383.CrossRef
27.
go back to reference Li X-Q, Björkman A, Andersson TB, Ridderström M, Masimirembwa CM. Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002;300:399–407.CrossRef Li X-Q, Björkman A, Andersson TB, Ridderström M, Masimirembwa CM. Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002;300:399–407.CrossRef
28.
go back to reference Kudzi W, Dodoo ANO, Mills JJ. Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet. 2009;10:124.CrossRef Kudzi W, Dodoo ANO, Mills JJ. Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet. 2009;10:124.CrossRef
Metadata
Title
Plasmodium falciparum genetic factors rather than host factors are likely to drive resistance to ACT in Ghana
Authors
Peter Hodoameda
Nancy Odurowah Duah-Quashie
Charles Oheneba Hagan
Sena Matrevi
Benjamin Abuaku
Kwadwo Koram
Neils Ben Quashie
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03320-7

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.