Skip to main content
Top
Published in: Malaria Journal 1/2020

01-12-2020 | Malaria | Research

Improving the efficiency of reactive case detection for malaria elimination in southern Zambia: a cross-sectional study

Authors: Fiona R. P. Bhondoekhan, Kelly M. Searle, Harry Hamapumbu, Mukuma Lubinda, Japhet Matoba, Michael Musonda, Ben Katowa, Timothy M. Shields, Tamaki Kobayashi, Douglas E. Norris, Frank C. Curriero, Jennifer C. Stevenson, Philip E. Thuma, William J. Moss, for the Southern and Central Africa International Centers of Excellence for Malaria Research

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Reactive case detection (RCD) seeks to enhance malaria surveillance and control by identifying and treating parasitaemic individuals residing near index cases. In Zambia, this strategy starts with passive detection of symptomatic incident malaria cases at local health facilities or by community health workers, with subsequent home visits to screen-and-treat residents in the index case and neighbouring (secondary) households within a 140-m radius using rapid diagnostic tests (RDTs). However, a small circular radius may not be the most efficient strategy to identify parasitaemic individuals in low-endemic areas with hotspots of malaria transmission. To evaluate if RCD efficiency could be improved by increasing the probability of identifying parasitaemic residents, environmental risk factors and a larger screening radius (250 m) were assessed in a region of low malaria endemicity.

Methods

Between January 12, 2015 and July 26, 2017, 4170 individuals residing in 158 index and 531 secondary households were enrolled and completed a baseline questionnaire in the catchment area of Macha Hospital in Choma District, Southern Province, Zambia. Plasmodium falciparum prevalence was measured using PfHRP2 RDTs and quantitative PCR (qPCR). A Quickbird™ high-resolution satellite image of the catchment area was used to create environmental risk factors in ArcGIS, and generalized estimating equations were used to evaluate associations between risk factors and secondary households with parasitaemic individuals.

Results

The parasite prevalence in secondary (non-index case) households was 0.7% by RDT and 1.8% by qPCR. Overall, 8.5% (n = 45) of secondary households had at least one resident with parasitaemia by qPCR or RDT. The risk of a secondary household having a parasitaemic resident was significantly increased in proximity to higher order streams and marginally with increasing distance from index households. The adjusted OR for proximity to third- and fifth-order streams were 2.97 (95% CI 1.04–8.42) and 2.30 (95% CI 1.04–5.09), respectively, and that for distance to index households for each 50 m was 1.24 (95% CI 0.98–1.58).

Conclusion

Applying proximity to streams as a screening tool, 16% (n = 3) more malaria-positive secondary households were identified compared to using a 140-m circular screening radius. This analysis highlights the potential use of environmental risk factors as a screening strategy to increase RCD efficiency.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rossi G, Van den Bergh R, Nguon C, Debackere M, Vernaeve L, Khim N, et al. Adapting reactive case detection strategies for falciparum malaria in a low-transmission area in Cambodia. Clin Infect Dis. 2017;66:296–8.CrossRef Rossi G, Van den Bergh R, Nguon C, Debackere M, Vernaeve L, Khim N, et al. Adapting reactive case detection strategies for falciparum malaria in a low-transmission area in Cambodia. Clin Infect Dis. 2017;66:296–8.CrossRef
2.
go back to reference Parker DM, Landier J, Von Seidlein L, Dondorp A, White L, Hanboonkunupakarn B, et al. Limitations of malaria reactive case detection in an area of low and unstable transmission on the Myanmar-Thailand border. Malar J. 2016;15:571.PubMedPubMedCentralCrossRef Parker DM, Landier J, Von Seidlein L, Dondorp A, White L, Hanboonkunupakarn B, et al. Limitations of malaria reactive case detection in an area of low and unstable transmission on the Myanmar-Thailand border. Malar J. 2016;15:571.PubMedPubMedCentralCrossRef
3.
go back to reference Cotter C, Sturrock HJW, Hsiang MS, Liu J, Phillips AA, Hwang J, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.PubMedCrossRef Cotter C, Sturrock HJW, Hsiang MS, Liu J, Phillips AA, Hwang J, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.PubMedCrossRef
5.
go back to reference Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, et al. Operational strategies to achieve and maintain malaria elimination. Lancet. 2010;376:1592–603.PubMedPubMedCentralCrossRef Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, et al. Operational strategies to achieve and maintain malaria elimination. Lancet. 2010;376:1592–603.PubMedPubMedCentralCrossRef
6.
go back to reference Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia. Malar J. 2010;9:265.PubMedPubMedCentralCrossRef Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia. Malar J. 2010;9:265.PubMedPubMedCentralCrossRef
7.
go back to reference Gerardin J, Bever CA, Hamainza B, Miller JM, Eckhoff PA, Wenger EA. Optimal population-level infection detection strategies for malaria control and elimination in a spatial model of malaria transmission. PLoS Comput Biol. 2016;12:e1004707.PubMedPubMedCentralCrossRef Gerardin J, Bever CA, Hamainza B, Miller JM, Eckhoff PA, Wenger EA. Optimal population-level infection detection strategies for malaria control and elimination in a spatial model of malaria transmission. PLoS Comput Biol. 2016;12:e1004707.PubMedPubMedCentralCrossRef
8.
go back to reference Branch O, Casapia WM, Gamboa DV, Hernandez JN, Alava FF, Roncal N, et al. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar J. 2005;4:27.PubMedPubMedCentralCrossRef Branch O, Casapia WM, Gamboa DV, Hernandez JN, Alava FF, Roncal N, et al. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar J. 2005;4:27.PubMedPubMedCentralCrossRef
9.
go back to reference Parker DM, Matthews SA, Yan G, Zhou G, Lee MC, Sirichaisinthop J, et al. Microgeography and molecular epidemiology of malaria at the Thailand-Myanmar border in the malaria pre-elimination phase. Malar J. 2015;14:198.PubMedPubMedCentralCrossRef Parker DM, Matthews SA, Yan G, Zhou G, Lee MC, Sirichaisinthop J, et al. Microgeography and molecular epidemiology of malaria at the Thailand-Myanmar border in the malaria pre-elimination phase. Malar J. 2015;14:198.PubMedPubMedCentralCrossRef
10.
go back to reference van Eijk AM, Ramanathapuram L, Sutton PL, Kanagaraj D, Priya GSL, Ravishankaran S, et al. What is the value of reactive case detection in malaria control? A case-study in India and a systematic review. Malar J. 2016;15:67.PubMedPubMedCentralCrossRef van Eijk AM, Ramanathapuram L, Sutton PL, Kanagaraj D, Priya GSL, Ravishankaran S, et al. What is the value of reactive case detection in malaria control? A case-study in India and a systematic review. Malar J. 2016;15:67.PubMedPubMedCentralCrossRef
11.
go back to reference Zelman BW, Baral R, Zarlinda I, Coutrier FN, Sanders KC, Cotter C, et al. Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia. Malar J. 2018;17:220.PubMedPubMedCentralCrossRef Zelman BW, Baral R, Zarlinda I, Coutrier FN, Sanders KC, Cotter C, et al. Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia. Malar J. 2018;17:220.PubMedPubMedCentralCrossRef
12.
go back to reference Sturrock HJW, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM, et al. Reactive case detection for malaria elimination: real-life experience from an ongoing program in Swaziland. PLoS ONE. 2013;8:e63830.PubMedPubMedCentralCrossRef Sturrock HJW, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM, et al. Reactive case detection for malaria elimination: real-life experience from an ongoing program in Swaziland. PLoS ONE. 2013;8:e63830.PubMedPubMedCentralCrossRef
13.
go back to reference Larsen DA, Bridges DJ, Miller J, Cheelo S, Winters A, Ngwenya-Kangombe T, et al. Location, location, location: environmental factors better predict malaria-positive individuals during reactive case detection than index case demographics in Southern Province, Zambia. Malar J. 2017;16:18.PubMedPubMedCentralCrossRef Larsen DA, Bridges DJ, Miller J, Cheelo S, Winters A, Ngwenya-Kangombe T, et al. Location, location, location: environmental factors better predict malaria-positive individuals during reactive case detection than index case demographics in Southern Province, Zambia. Malar J. 2017;16:18.PubMedPubMedCentralCrossRef
14.
go back to reference Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.PubMedPubMedCentralCrossRef Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.PubMedPubMedCentralCrossRef
15.
go back to reference Larsen DA, Chisha Z, Winters B, Mwanza M, Kamuliwo M, Mbwili C, et al. Malaria surveillance in low-transmission areas of Zambia using reactive case detection. Malar J. 2015;14:465.PubMedPubMedCentralCrossRef Larsen DA, Chisha Z, Winters B, Mwanza M, Kamuliwo M, Mbwili C, et al. Malaria surveillance in low-transmission areas of Zambia using reactive case detection. Malar J. 2015;14:465.PubMedPubMedCentralCrossRef
18.
go back to reference Deutsch-Feldman M, Hamapumbu H, Lubinda J, Musonda M, Katowa B, et al. Efficiency of a malaria reactive test-and-treat program in Southern Zambia: a prospective, observational study. Am J Trop Med Hyg. 2018;98:1382–8.PubMedPubMedCentralCrossRef Deutsch-Feldman M, Hamapumbu H, Lubinda J, Musonda M, Katowa B, et al. Efficiency of a malaria reactive test-and-treat program in Southern Zambia: a prospective, observational study. Am J Trop Med Hyg. 2018;98:1382–8.PubMedPubMedCentralCrossRef
19.
go back to reference Pinchoff J, Chaponda M, Shields T, Lupiya J, Kobayashi T, Mulenga M, et al. Predictive malaria risk and uncertainty mapping in Nchelenge District, Zambia: evidence of widespread, persistent risk and implications for targeted interventions. Am J Trop Med Hyg. 2015;93:1260–7.PubMedPubMedCentralCrossRef Pinchoff J, Chaponda M, Shields T, Lupiya J, Kobayashi T, Mulenga M, et al. Predictive malaria risk and uncertainty mapping in Nchelenge District, Zambia: evidence of widespread, persistent risk and implications for targeted interventions. Am J Trop Med Hyg. 2015;93:1260–7.PubMedPubMedCentralCrossRef
20.
go back to reference Chirombo J, Lowe R, Kazembe L. Using structured additive regression models to estimate risk factors of malaria: analysis of 2010 Malawi malaria indicator survey data. PLoS ONE. 2014;9:e101116.PubMedPubMedCentralCrossRef Chirombo J, Lowe R, Kazembe L. Using structured additive regression models to estimate risk factors of malaria: analysis of 2010 Malawi malaria indicator survey data. PLoS ONE. 2014;9:e101116.PubMedPubMedCentralCrossRef
21.
go back to reference Graves PM, Richards FO, Ngondi J, Emerson PM, Shargie EB, Endeshaw T, et al. Individual, household and environmental risk factors for malaria infection in Amhara, Oromia and SNNP regions of Ethiopia. Trans R Soc Trop Med Hyg. 2009;103:1211–20.PubMedCrossRef Graves PM, Richards FO, Ngondi J, Emerson PM, Shargie EB, Endeshaw T, et al. Individual, household and environmental risk factors for malaria infection in Amhara, Oromia and SNNP regions of Ethiopia. Trans R Soc Trop Med Hyg. 2009;103:1211–20.PubMedCrossRef
22.
go back to reference Moss WJ, Dorsey G, Mueller I, Laufer MK, Krogstad DJ, Vinetz JM, et al. Malaria epidemiology and control within the International Centers of Excellence for Malaria Research. Am J Trop Med Hyg. 2015;93:5–15.PubMedPubMedCentralCrossRef Moss WJ, Dorsey G, Mueller I, Laufer MK, Krogstad DJ, Vinetz JM, et al. Malaria epidemiology and control within the International Centers of Excellence for Malaria Research. Am J Trop Med Hyg. 2015;93:5–15.PubMedPubMedCentralCrossRef
23.
go back to reference Clennon JA, Kamanga A, Musapa M, Shiff C, Glass GE. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia. Int J Health Geogr. 2010;9:58.PubMedPubMedCentralCrossRef Clennon JA, Kamanga A, Musapa M, Shiff C, Glass GE. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia. Int J Health Geogr. 2010;9:58.PubMedPubMedCentralCrossRef
24.
go back to reference Pinchoff J, Chaponda M, Shields TM, Sichivula J, Muleba M, Mulenga M, et al. Individual and household level risk factors associated with malaria in Nchelenge District, a region with perennial transmission: a serial cross-sectional study from 2012 to 2015. PLoS ONE. 2016;11:e0156717.PubMedPubMedCentralCrossRef Pinchoff J, Chaponda M, Shields TM, Sichivula J, Muleba M, Mulenga M, et al. Individual and household level risk factors associated with malaria in Nchelenge District, a region with perennial transmission: a serial cross-sectional study from 2012 to 2015. PLoS ONE. 2016;11:e0156717.PubMedPubMedCentralCrossRef
25.
go back to reference Searle KM, Shields T, Hamapumba H, Kobayashi T, Mharakurwa S, Thuma PE, et al. Efficiency of household reactive case detection for malaria in rural Southern Zambia: simulations based on cross-sectional surveys from two epidemiological settings. PLoS ONE. 2013;8:e70972.PubMedPubMedCentralCrossRef Searle KM, Shields T, Hamapumba H, Kobayashi T, Mharakurwa S, Thuma PE, et al. Efficiency of household reactive case detection for malaria in rural Southern Zambia: simulations based on cross-sectional surveys from two epidemiological settings. PLoS ONE. 2013;8:e70972.PubMedPubMedCentralCrossRef
26.
go back to reference Moss WJ, Hamapumba H, Kobayashi T, Shields T, Kamanga A, Clennon J, et al. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey. Malar J. 2011;10:163.PubMedPubMedCentralCrossRef Moss WJ, Hamapumba H, Kobayashi T, Shields T, Kamanga A, Clennon J, et al. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey. Malar J. 2011;10:163.PubMedPubMedCentralCrossRef
27.
go back to reference Mharakurwa S, Thuma PE, Norris DE, Mulenga M, Chalwe V, Chipeta J, et al. Malaria epidemiology and control in Southern Africa. Acta Trop. 2012;121:202–6.PubMedCrossRef Mharakurwa S, Thuma PE, Norris DE, Mulenga M, Chalwe V, Chipeta J, et al. Malaria epidemiology and control in Southern Africa. Acta Trop. 2012;121:202–6.PubMedCrossRef
28.
go back to reference Searle KM, Katowa B, Kobayashi T, Siame MNS, Mharakurwa S, Carpi G, et al. Distinct parasite populations infect individuals identified through passive and active case detection in a region of declining malaria transmission in Southern Zambia. Malar J. 2017;16:154.PubMedPubMedCentralCrossRef Searle KM, Katowa B, Kobayashi T, Siame MNS, Mharakurwa S, Carpi G, et al. Distinct parasite populations infect individuals identified through passive and active case detection in a region of declining malaria transmission in Southern Zambia. Malar J. 2017;16:154.PubMedPubMedCentralCrossRef
29.
go back to reference Kent RJ, Thuma PE, Mharakurwa S, Douglas EN. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in Southern Zambia. Am J Trop Med Hyg. 2007;76:267–74.PubMedCrossRef Kent RJ, Thuma PE, Mharakurwa S, Douglas EN. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in Southern Zambia. Am J Trop Med Hyg. 2007;76:267–74.PubMedCrossRef
31.
32.
go back to reference Laban NM, Kobayashi T, Hamapumba H, Sullivan D, Mharakurwa S, Thuma PE, et al. Comparison of a PfHRP2-based rapid diagnostic test and PCR for malaria in a low prevalence setting in rural Southern Zambia: implications for elimination. Malar J. 2015;14:25.PubMedPubMedCentralCrossRef Laban NM, Kobayashi T, Hamapumba H, Sullivan D, Mharakurwa S, Thuma PE, et al. Comparison of a PfHRP2-based rapid diagnostic test and PCR for malaria in a low prevalence setting in rural Southern Zambia: implications for elimination. Malar J. 2015;14:25.PubMedPubMedCentralCrossRef
33.
go back to reference Xu W, Morris U, Aydin-Schmidt B, Msellem M, Shakely D, Petzold M, et al. SYBR green real-time PCR-RFLP assay targeting the Plasmodium cytochrome B gene—a highly sensitive molecular tool for malaria parasite detection and species determination. PLoS ONE. 2015;10:e0120210.PubMedPubMedCentralCrossRef Xu W, Morris U, Aydin-Schmidt B, Msellem M, Shakely D, Petzold M, et al. SYBR green real-time PCR-RFLP assay targeting the Plasmodium cytochrome B gene—a highly sensitive molecular tool for malaria parasite detection and species determination. PLoS ONE. 2015;10:e0120210.PubMedPubMedCentralCrossRef
34.
go back to reference Ranadive N, Kunene S, Darteh S, Ntshalintshali N, Nhlabathi N, Dlamini N, et al. Limitations of rapid diagnostic testing in patients with suspected malaria: a diagnostic accuracy evaluation from Swaziland, a low-endemicity country aiming for malaria elimination. Clin Infect Dis. 2017;64:1221–7.PubMedPubMedCentralCrossRef Ranadive N, Kunene S, Darteh S, Ntshalintshali N, Nhlabathi N, Dlamini N, et al. Limitations of rapid diagnostic testing in patients with suspected malaria: a diagnostic accuracy evaluation from Swaziland, a low-endemicity country aiming for malaria elimination. Clin Infect Dis. 2017;64:1221–7.PubMedPubMedCentralCrossRef
35.
go back to reference Strahler A. Dynamic basis of geomorphology. Geol Soc Am Bull. 1952;63:923–38.CrossRef Strahler A. Dynamic basis of geomorphology. Geol Soc Am Bull. 1952;63:923–38.CrossRef
36.
go back to reference Bulterys PL, Mharakurwa S, Thuma PE. Cattle, other domestic animal ownership, and distance between dwelling structures are associated with reduced risk of recurrent Plasmodium falciparum infection in Southern Zambia. Trop Med Int Health. 2009;14:522–8.PubMedCrossRef Bulterys PL, Mharakurwa S, Thuma PE. Cattle, other domestic animal ownership, and distance between dwelling structures are associated with reduced risk of recurrent Plasmodium falciparum infection in Southern Zambia. Trop Med Int Health. 2009;14:522–8.PubMedCrossRef
37.
go back to reference Mayagaya VS, Nkwengulila G, Lyimo IN, Kihonda J, Mtambala H, Ngonyani H, et al. The Impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in Southern Tanzania. Malar J. 2015;14:17.PubMedPubMedCentralCrossRef Mayagaya VS, Nkwengulila G, Lyimo IN, Kihonda J, Mtambala H, Ngonyani H, et al. The Impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in Southern Tanzania. Malar J. 2015;14:17.PubMedPubMedCentralCrossRef
38.
go back to reference Gómez-Barroso D, García-Carrasco E, Herrador Z, Ncogo P, Romay-Barja M, Mangue MEO, et al. Spatial clustering and risk factors of malaria infections in Bata District, Equatorial Guinea. Malar J. 2017;16:146.PubMedPubMedCentralCrossRef Gómez-Barroso D, García-Carrasco E, Herrador Z, Ncogo P, Romay-Barja M, Mangue MEO, et al. Spatial clustering and risk factors of malaria infections in Bata District, Equatorial Guinea. Malar J. 2017;16:146.PubMedPubMedCentralCrossRef
39.
go back to reference Pinchoff J, Henostroza G, Carter BS, Roberts ST, Hatwiinda S, Hamainza B, et al. Spatial patterns of incident malaria cases and their household contacts in a single clinic catchment area of Chongwe District, Zambia. Malar J. 2015;4:305.CrossRef Pinchoff J, Henostroza G, Carter BS, Roberts ST, Hatwiinda S, Hamainza B, et al. Spatial patterns of incident malaria cases and their household contacts in a single clinic catchment area of Chongwe District, Zambia. Malar J. 2015;4:305.CrossRef
40.
go back to reference Ferrao JL, Niquisse S, Mendes JM, Painho M. Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Int J Environ Res Public Health. 2018;15:E79.CrossRef Ferrao JL, Niquisse S, Mendes JM, Painho M. Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Int J Environ Res Public Health. 2018;15:E79.CrossRef
41.
go back to reference Hasyim H, Nursafingi A, Haque U, Montag D, Groneberg DA, Dhimal M, et al. Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia. Malar J. 2018;17:87.PubMedPubMedCentralCrossRef Hasyim H, Nursafingi A, Haque U, Montag D, Groneberg DA, Dhimal M, et al. Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia. Malar J. 2018;17:87.PubMedPubMedCentralCrossRef
42.
go back to reference Fontoura PS, Finco BF, Lima NF, de Carvalho JF, Vinetz JM, Castro MC, et al. Reactive case detection for Plasmodium vivax malaria elimination in rural Amazonia. PLoS Negl Trop Dis. 2016;10:e0005221.PubMedPubMedCentralCrossRef Fontoura PS, Finco BF, Lima NF, de Carvalho JF, Vinetz JM, Castro MC, et al. Reactive case detection for Plasmodium vivax malaria elimination in rural Amazonia. PLoS Negl Trop Dis. 2016;10:e0005221.PubMedPubMedCentralCrossRef
43.
go back to reference Hustedt J, Canavati SE, Rang C, Ashton RA, Khim N, Berne L, et al. Reactive case-detection of malaria in Pailin Province, Western Cambodia: lessons from a year-long evaluation in a pre-elimination setting. Malar J. 2016;15:132.PubMedPubMedCentralCrossRef Hustedt J, Canavati SE, Rang C, Ashton RA, Khim N, Berne L, et al. Reactive case-detection of malaria in Pailin Province, Western Cambodia: lessons from a year-long evaluation in a pre-elimination setting. Malar J. 2016;15:132.PubMedPubMedCentralCrossRef
45.
go back to reference Kibret S, Wilson GG, Ryder D, Tekie H, Petros B. Environmental and meteorological factors linked to malaria transmission around large dams at three ecological settings in Ethiopia. Malar J. 2019;18:54.PubMedPubMedCentralCrossRef Kibret S, Wilson GG, Ryder D, Tekie H, Petros B. Environmental and meteorological factors linked to malaria transmission around large dams at three ecological settings in Ethiopia. Malar J. 2019;18:54.PubMedPubMedCentralCrossRef
46.
go back to reference Das S, Jang IK, Barney B, Peck R, Rek JC, Arinaitwe E, et al. Performance of a high-sensitivity rapid diagnostic test for Plasmodium falciparum malaria in asymptomatic individuals from Uganda and Myanmar and naive human challenge infections. Am J Trop Med Hyg. 2017;97:1540–50.PubMedPubMedCentralCrossRef Das S, Jang IK, Barney B, Peck R, Rek JC, Arinaitwe E, et al. Performance of a high-sensitivity rapid diagnostic test for Plasmodium falciparum malaria in asymptomatic individuals from Uganda and Myanmar and naive human challenge infections. Am J Trop Med Hyg. 2017;97:1540–50.PubMedPubMedCentralCrossRef
47.
go back to reference Hofmann NE, Greunberg M, Nate E, Ura A, Rodriguez-Rodriguez D, Salib M, et al. Assessment of ultra-sensitive malaria diagnosis versus standard molecular diagnostics for malaria elimination: an in-depth molecular community cross-sectional study. Lancet Infect Dis. 2018;18:1108–16.PubMedCrossRef Hofmann NE, Greunberg M, Nate E, Ura A, Rodriguez-Rodriguez D, Salib M, et al. Assessment of ultra-sensitive malaria diagnosis versus standard molecular diagnostics for malaria elimination: an in-depth molecular community cross-sectional study. Lancet Infect Dis. 2018;18:1108–16.PubMedCrossRef
48.
go back to reference Rubio-Palis Y, Bevilacqua M, Medina DA, Moreno JE, Cardenas L, Sanchez V, et al. Malaria entomological risk factors in relation to land cover in the lower Caura river basin, Venezuela. Mem Inst Oswaldo Cruz. 2013;108:220–8.PubMedPubMedCentralCrossRef Rubio-Palis Y, Bevilacqua M, Medina DA, Moreno JE, Cardenas L, Sanchez V, et al. Malaria entomological risk factors in relation to land cover in the lower Caura river basin, Venezuela. Mem Inst Oswaldo Cruz. 2013;108:220–8.PubMedPubMedCentralCrossRef
49.
go back to reference Ricotta EE, Frese SA, Choobwe C, Louis TA, Shiff CJ. Evaluating local vegetation cover as a risk factor for malaria transmission: a new analytical approach using ImageJ. Malar J. 2014;13:94.PubMedPubMedCentralCrossRef Ricotta EE, Frese SA, Choobwe C, Louis TA, Shiff CJ. Evaluating local vegetation cover as a risk factor for malaria transmission: a new analytical approach using ImageJ. Malar J. 2014;13:94.PubMedPubMedCentralCrossRef
Metadata
Title
Improving the efficiency of reactive case detection for malaria elimination in southern Zambia: a cross-sectional study
Authors
Fiona R. P. Bhondoekhan
Kelly M. Searle
Harry Hamapumbu
Mukuma Lubinda
Japhet Matoba
Michael Musonda
Ben Katowa
Timothy M. Shields
Tamaki Kobayashi
Douglas E. Norris
Frank C. Curriero
Jennifer C. Stevenson
Philip E. Thuma
William J. Moss
for the Southern and Central Africa International Centers of Excellence for Malaria Research
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03245-1

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue