Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Microgeography and molecular epidemiology of malaria at the Thailand-Myanmar border in the malaria pre-elimination phase

Authors: Daniel M. Parker, Stephen A. Matthews, Guiyun Yan, Guofa Zhou, Ming-Chieh Lee, Jeeraphat Sirichaisinthop, Kirakorn Kiattibutr, Qi Fan, Peipei Li, Jetsumon Sattabongkot, Liwang Cui

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Endemic malaria in Thailand continues to only exist along international borders. This pattern is frequently attributed to importation of malaria from surrounding nations. A microgeographical approach was used to investigate malaria cases in a study village along the Thailand–Myanmar border.

Methods

Three mass blood surveys were conducted during the study period (July and December 2011, and May 2012) and were matched to a cohort-based demographic surveillance system. Blood slides and filter papers were taken from each participant. Slides were cross-verified by an expert microscopist and filter papers were analysed using nested PCR. Cases were then mapped to households and analysed using spatial statistics. A risk factor analysis was done using mixed effects logistic regression.

Results

In total, 55 Plasmodium vivax and 20 Plasmodium falciparum cases (out of 547 participants) were detected through PCR, compared to six and two (respectively) cases detected by field microscopy. The single largest risk factor for infection was citizenship. Many study participants were ethnic Karen people with no citizenship in either Thailand or Myanmar. This subpopulation had over eight times the odds of malaria infection when compared to Thai citizens. Cases also appeared to cluster near a major drainage system and year–round water source within the study village.

Conclusion

This research indicates that many cases of malaria remain undiagnosed in the region. The spatial and demographic clustering of cases in a sub-group of the population indicates either transmission within the Thai village or shared exposure to malaria vectors outside of the village. While it is possible that malaria is imported to Thailand from Myanmar, the existence of undetected infections, coupled with an ecological setting that is conducive to malaria transmission, means that indigenous transmission could also occur on the Thai side of the border. Improved, timely, and active case detection is warranted.
Literature
3.
go back to reference Cui L, Yan G, Sattabongkot J, Cao Y, Chen B, Chen X, et al. Malaria in the greater Mekong subregion: heterogeneity and complexity. Acta Trop. 2012;121:227–39.CrossRefPubMedCentralPubMed Cui L, Yan G, Sattabongkot J, Cao Y, Chen B, Chen X, et al. Malaria in the greater Mekong subregion: heterogeneity and complexity. Acta Trop. 2012;121:227–39.CrossRefPubMedCentralPubMed
5.
go back to reference Erhart A, Ngo DT, Phan VK, Ta TT, Van Overmeir C, Speybroeck N, et al. Epidemiology of forest malaria in central Vietnam: a large scale cross-sectional survey. Malar J. 2005;4:58.CrossRefPubMedCentralPubMed Erhart A, Ngo DT, Phan VK, Ta TT, Van Overmeir C, Speybroeck N, et al. Epidemiology of forest malaria in central Vietnam: a large scale cross-sectional survey. Malar J. 2005;4:58.CrossRefPubMedCentralPubMed
6.
go back to reference Markwardt R, Sorosjinda-Nunthawarasilp P, Saisang V. Human activities contributing to a malaria outbreak in Thong Pha Phum District, Kanchanaburi, Thailand. Southeast Asian J Trop Med Public Health. 2008;39 suppl 1:10–7. Markwardt R, Sorosjinda-Nunthawarasilp P, Saisang V. Human activities contributing to a malaria outbreak in Thong Pha Phum District, Kanchanaburi, Thailand. Southeast Asian J Trop Med Public Health. 2008;39 suppl 1:10–7.
7.
go back to reference Delacollette C, D’Souza C, Christophel E, Thimasarn K, Abdur R, Bell D, et al. Malaria trends and challenges in the greater Mekong subregion. Southeast Asian J Trop Med Public Health. 2009;40:674–91.PubMed Delacollette C, D’Souza C, Christophel E, Thimasarn K, Abdur R, Bell D, et al. Malaria trends and challenges in the greater Mekong subregion. Southeast Asian J Trop Med Public Health. 2009;40:674–91.PubMed
8.
go back to reference Kitvatanachai S, Rhongbutsri P. Malaria in asymptomatic migrant workers and symptomatic patients in Thamaka district, Kanchanaburi province, Thailand. Asian Pacific J Trop Dis. 2012;2:S374–7.CrossRef Kitvatanachai S, Rhongbutsri P. Malaria in asymptomatic migrant workers and symptomatic patients in Thamaka district, Kanchanaburi province, Thailand. Asian Pacific J Trop Dis. 2012;2:S374–7.CrossRef
9.
go back to reference Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant anopheles vectors of human malaria in the Asia-pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89.CrossRefPubMedCentralPubMed Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant anopheles vectors of human malaria in the Asia-pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89.CrossRefPubMedCentralPubMed
10.
go back to reference Zhou G, Sirichaisinthop J, Sattabongkot J, Jones J, Bjornstad ON, Yan G, et al. Spatio-temporal distribution of plasmodium falciparum and P. Vivax malaria in Thailand. Am J Trop Med Hyg. 2005;72:256–62.PubMed Zhou G, Sirichaisinthop J, Sattabongkot J, Jones J, Bjornstad ON, Yan G, et al. Spatio-temporal distribution of plasmodium falciparum and P. Vivax malaria in Thailand. Am J Trop Med Hyg. 2005;72:256–62.PubMed
11.
go back to reference Carrara VI, Sirilak S, Thonglairuam J, Rojanawatsirivet C, Proux S, Gilbos V, et al. Deployment of early diagnosis and mefloquine-artesunate treatment of falciparum malaria in Thailand: the Tak malaria initiative. PLoS Med. 2006;3:e183.CrossRefPubMedCentralPubMed Carrara VI, Sirilak S, Thonglairuam J, Rojanawatsirivet C, Proux S, Gilbos V, et al. Deployment of early diagnosis and mefloquine-artesunate treatment of falciparum malaria in Thailand: the Tak malaria initiative. PLoS Med. 2006;3:e183.CrossRefPubMedCentralPubMed
12.
go back to reference Li P, Zhao Z, Wang Y, Xing H, Parker DM, Yang Z, et al. Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys. Malar J. 2014;13:175.CrossRefPubMedCentralPubMed Li P, Zhao Z, Wang Y, Xing H, Parker DM, Yang Z, et al. Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys. Malar J. 2014;13:175.CrossRefPubMedCentralPubMed
13.
go back to reference Putaporntip C, Hongsrimuang T, Seethamchai S, Kobasa T, Limkittikul K, Cui L, et al. Differential prevalence of plasmodium infections and cryptic plasmodium knowlesi malaria in humans in Thailand. J Infect Dis. 2009;199:1143–50.CrossRefPubMed Putaporntip C, Hongsrimuang T, Seethamchai S, Kobasa T, Limkittikul K, Cui L, et al. Differential prevalence of plasmodium infections and cryptic plasmodium knowlesi malaria in humans in Thailand. J Infect Dis. 2009;199:1143–50.CrossRefPubMed
14.
16.
go back to reference Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods. 1997;26:1481–96.CrossRef Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods. 1997;26:1481–96.CrossRef
17.
go back to reference Ouédraogo AL, Bousema T, Schneider P, de Vlas SJ, Ilboudo-Sanogo E, Cuzin-Ouattara N, et al. Substantial contribution of submicroscopical plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLoS One. 2009;4:e8410.CrossRefPubMedCentralPubMed Ouédraogo AL, Bousema T, Schneider P, de Vlas SJ, Ilboudo-Sanogo E, Cuzin-Ouattara N, et al. Substantial contribution of submicroscopical plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLoS One. 2009;4:e8410.CrossRefPubMedCentralPubMed
18.
go back to reference Harris I, Sharrock WW, Bain LM, Gray K-A, Bobogare A, Boaz L, et al. A large proportion of asymptomatic plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010;9:254.CrossRefPubMedCentralPubMed Harris I, Sharrock WW, Bain LM, Gray K-A, Bobogare A, Boaz L, et al. A large proportion of asymptomatic plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010;9:254.CrossRefPubMedCentralPubMed
19.
go back to reference Steenkeste N, Rogers WO, Okell L, Jeanne I, Incardona S, Duval L, et al. Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri province, Cambodia: implication for malaria elimination. Malar J. 2010;9:108.CrossRefPubMedCentralPubMed Steenkeste N, Rogers WO, Okell L, Jeanne I, Incardona S, Duval L, et al. Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri province, Cambodia: implication for malaria elimination. Malar J. 2010;9:108.CrossRefPubMedCentralPubMed
20.
go back to reference Okell LC, Bousema T, Griffin JT, Ouédraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.CrossRefPubMedCentralPubMed Okell LC, Bousema T, Griffin JT, Ouédraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.CrossRefPubMedCentralPubMed
21.
go back to reference Coleman RE, Maneechai N, Rachaphaew N, Kumpitak C, Miller RS, Soyseng V, et al. Comparison of field and expert laboratory microscopy for active surveillance for asymptomatic plasmodium falciparum and plasmodium vivax in western Thailand. Am J Trop Med Hyg. 2002;67:141–4.PubMed Coleman RE, Maneechai N, Rachaphaew N, Kumpitak C, Miller RS, Soyseng V, et al. Comparison of field and expert laboratory microscopy for active surveillance for asymptomatic plasmodium falciparum and plasmodium vivax in western Thailand. Am J Trop Med Hyg. 2002;67:141–4.PubMed
22.
go back to reference McKenzie FE, Sirichaisinthop J, Miller RS, Gasser Jr RA, Wongsrichanalai C. Dependence of malaria detection and species diagnosis by microscopy on parasite density. Am J Trop Med Hyg. 2003;69:372–6.PubMedCentralPubMed McKenzie FE, Sirichaisinthop J, Miller RS, Gasser Jr RA, Wongsrichanalai C. Dependence of malaria detection and species diagnosis by microscopy on parasite density. Am J Trop Med Hyg. 2003;69:372–6.PubMedCentralPubMed
23.
go back to reference Raghavan K. Statistical considerations in the microscopical diagnosis of malaria, with special reference to the role of cross-checking. Bull World Health Organ. 1966;34:788–91.PubMedCentralPubMed Raghavan K. Statistical considerations in the microscopical diagnosis of malaria, with special reference to the role of cross-checking. Bull World Health Organ. 1966;34:788–91.PubMedCentralPubMed
24.
go back to reference Trape JF. Rapid evaluation thick smear of malaria examination parasite density and standardization for epidemiological investigations. Trans R Soc Trop Med Hyg. 1985;79:181–4.CrossRefPubMed Trape JF. Rapid evaluation thick smear of malaria examination parasite density and standardization for epidemiological investigations. Trans R Soc Trop Med Hyg. 1985;79:181–4.CrossRefPubMed
25.
go back to reference Payne D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ. 1988;66:621–6.PubMedCentralPubMed Payne D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ. 1988;66:621–6.PubMedCentralPubMed
26.
go back to reference Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Davies DH, Jain A, et al. Submicroscopic and asymptomatic plasmodium falciparum and plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malar J. 2015;14:95.CrossRefPubMedCentralPubMed Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Davies DH, Jain A, et al. Submicroscopic and asymptomatic plasmodium falciparum and plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malar J. 2015;14:95.CrossRefPubMedCentralPubMed
29.
go back to reference Luxemburger C, Thway KL, White NJ, Webster HK, Kyle DE, Maclankirri L, et al. The epidemiology of malaria in a Karen population on the western border of Thailand. Trans R Soc Trop Med Hyg. 1996;90:105–11.CrossRefPubMed Luxemburger C, Thway KL, White NJ, Webster HK, Kyle DE, Maclankirri L, et al. The epidemiology of malaria in a Karen population on the western border of Thailand. Trans R Soc Trop Med Hyg. 1996;90:105–11.CrossRefPubMed
31.
go back to reference Imwong M, Boel ME, Pagornrat W, Pimanpanarak M, McGready R, Day NPJ, et al. The first Plasmodium vivax relapses of life are usually genetically homologous. J Infect Dis. 2012;205:680–3.CrossRefPubMedCentralPubMed Imwong M, Boel ME, Pagornrat W, Pimanpanarak M, McGready R, Day NPJ, et al. The first Plasmodium vivax relapses of life are usually genetically homologous. J Infect Dis. 2012;205:680–3.CrossRefPubMedCentralPubMed
Metadata
Title
Microgeography and molecular epidemiology of malaria at the Thailand-Myanmar border in the malaria pre-elimination phase
Authors
Daniel M. Parker
Stephen A. Matthews
Guiyun Yan
Guofa Zhou
Ming-Chieh Lee
Jeeraphat Sirichaisinthop
Kirakorn Kiattibutr
Qi Fan
Peipei Li
Jetsumon Sattabongkot
Liwang Cui
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0712-5

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue