Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia

Authors: Brittany W. Zelman, Ranju Baral, Iska Zarlinda, Farah N. Coutrier, Kelly C. Sanders, Chris Cotter, Herdiana Herdiana, Bryan Greenhouse, Rima Shretta, Roly D. Gosling, Michelle S. Hsiang

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Reactive case detection (RACD) is an active case finding strategy where households and neighbours of a passively identified case (index case) are screened to identify and treat additional malaria infections with the goal of gathering surveillance information and potentially reducing further transmission. Although it is widely considered a key strategy in low burden settings, little is known about the costs and the cost-effectiveness of different diagnostic methods used for RACD. The aims of this study were to measure the cost of conducting RACD and compare the cost-effectiveness of microscopy to the more sensitive diagnostic method loop-mediated isothermal amplification (LAMP).

Methods

The study was conducted in RACD surveillance sites in five sub-districts in Aceh Besar, Indonesia. The cost inputs and yield of implementing RACD with microscopy and/or LAMP were collected prospectively over a 20 months study period between May 2014 and December 2015. Costs and cost-effectiveness (USD) of the different strategies were examined. The main cost measures were cost per RACD event, per person screened, per population at risk (PAR); defined as total population in each sub-district, and per infection found. The main cost-effectiveness measure was incremental cost-effectiveness ratio (ICER), expressed as cost per malaria infection detected by LAMP versus microscopy. The effects of varying test positivity rate or diagnostic yield on cost per infection identified and ICER were also assessed.

Results

Among 1495 household members and neighbours screened in 36 RACD events, two infections were detected by microscopy and confirmed by LAMP, and four infections were missed by microscopy but detected by LAMP. The average total cost of conducting RACD using microscopy and LAMP was $1178 per event with LAMP-specific consumables and personnel being the main cost drivers. The average cost of screening one individual during RACD was $11, with an additional cost of diagnostics at $0.62 and $16 per person for microscopy and LAMP, respectively. As a public health intervention, RACD using both diagnostics cost an average of $0.42 per PAR per year. Comparing RACD using microscopy only versus RACD using LAMP only, the cost per infection found was $8930 and $6915, respectively. To add LAMP as an additional intervention accompanying RACD would cost $9 per individual screened annually in this setting. The ICER was estimated to be $5907 per additional malaria infection detected by LAMP versus microscopy. Cost per infection identified and ICER declined with increasing test positivity rate and increasing diagnostic yield.

Conclusions

This study provides the first estimates on the cost and cost-effectiveness of RACD from a low transmission setting. Costs per individual screened were high, though costs per PAR were low. Compared to microscopy, the use of LAMP in RACD was more costly but more cost-effective for the detection of infections, with diminishing returns observed when findings were extrapolated to scenarios with higher prevalence of infection using more sensitive diagnostics. As malaria programmes consider active case detection and the integration of more sensitive diagnostics, these findings may inform strategic and budgetary planning.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. A framework for malaria elimination. Geneva: World Health Organization; 2017. WHO. A framework for malaria elimination. Geneva: World Health Organization; 2017.
2.
go back to reference WHO. Disease surveillance for malaria control: an operational manual. Geneva: World Health Organization; 2012. WHO. Disease surveillance for malaria control: an operational manual. Geneva: World Health Organization; 2012.
3.
go back to reference Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, et al. Operational strategies to achieve and maintain malaria elimination. Lancet. 2010;376:1592–603.CrossRefPubMedPubMedCentral Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, et al. Operational strategies to achieve and maintain malaria elimination. Lancet. 2010;376:1592–603.CrossRefPubMedPubMedCentral
4.
go back to reference Galappaththy GN, Gueye CS, Sanders K, Rundi C, Vestergaard L, Cotter C, et al. Reactive surveillance methods used for malaria elimination in Asia and the Pacific: results from a 12 country survey. Malar J. 2012;11(Suppl 1):P90.CrossRefPubMedCentral Galappaththy GN, Gueye CS, Sanders K, Rundi C, Vestergaard L, Cotter C, et al. Reactive surveillance methods used for malaria elimination in Asia and the Pacific: results from a 12 country survey. Malar J. 2012;11(Suppl 1):P90.CrossRefPubMedCentral
5.
go back to reference Moonen B, Cohen JM, Tatem AJ, Cohen J, Hay SI, Sabot O, Smith DL. A framework for assessing the feasibility of malaria elimination. Malar J. 2010;9:322.CrossRefPubMedPubMedCentral Moonen B, Cohen JM, Tatem AJ, Cohen J, Hay SI, Sabot O, Smith DL. A framework for assessing the feasibility of malaria elimination. Malar J. 2010;9:322.CrossRefPubMedPubMedCentral
6.
go back to reference Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013;10:e1001467.CrossRefPubMedPubMedCentral Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013;10:e1001467.CrossRefPubMedPubMedCentral
7.
go back to reference Okell LC, Ghani AC, Lyons E, Drakeley CJ. Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis. 2009;200:1509–17.CrossRefPubMed Okell LC, Ghani AC, Lyons E, Drakeley CJ. Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis. 2009;200:1509–17.CrossRefPubMed
8.
go back to reference Wu L, van den Hoogen LL, Slater H, Walker PG, Ghani AC, Drakeley CJ, et al. Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature. 2015;528:S86–93.CrossRefPubMed Wu L, van den Hoogen LL, Slater H, Walker PG, Ghani AC, Drakeley CJ, et al. Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature. 2015;528:S86–93.CrossRefPubMed
9.
10.
go back to reference Britton S, Cheng Q, McCarthy JS. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malar J. 2016;15:88.CrossRefPubMedPubMedCentral Britton S, Cheng Q, McCarthy JS. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malar J. 2016;15:88.CrossRefPubMedPubMedCentral
11.
go back to reference Herdiana H, Cotter C, Coutrier FN, Zarlinda I, Zelman BW, Tirta YK, et al. Malaria risk factor assessment using active and passive surveillance data from Aceh Besar, Indonesia, a low endemic, malaria elimination setting with Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. Malar J. 2016;15:468.CrossRefPubMedPubMedCentral Herdiana H, Cotter C, Coutrier FN, Zarlinda I, Zelman BW, Tirta YK, et al. Malaria risk factor assessment using active and passive surveillance data from Aceh Besar, Indonesia, a low endemic, malaria elimination setting with Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. Malar J. 2016;15:468.CrossRefPubMedPubMedCentral
12.
go back to reference Monthly malaria report and findings: January–December 2014–2015. Aceh Besar, Aceh Province, Indonesia: Aceh Besar District Health Office (DHO); 2015. Monthly malaria report and findings: January–December 2014–2015. Aceh Besar, Aceh Province, Indonesia: Aceh Besar District Health Office (DHO); 2015.
13.
go back to reference National malaria control program strategic plan 2015–2019. Indonesia: Ministry of Health Republic of Indonesia; 2014. National malaria control program strategic plan 2015–2019. Indonesia: Ministry of Health Republic of Indonesia; 2014.
14.
go back to reference Ekawati LL, Herdiana H, Sumiwi ME, Barussanah C, Ainun C, Sabri S, et al. A comprehensive assessment of the malaria microscopy system of Aceh, Indonesia, in preparation for malaria elimination. Malar J. 2015;14:240.CrossRefPubMedPubMedCentral Ekawati LL, Herdiana H, Sumiwi ME, Barussanah C, Ainun C, Sabri S, et al. A comprehensive assessment of the malaria microscopy system of Aceh, Indonesia, in preparation for malaria elimination. Malar J. 2015;14:240.CrossRefPubMedPubMedCentral
15.
go back to reference WHO. Basic malaria microscopy. Part 1: learner’s guide. Geneva: World Health Organization; 2010. WHO. Basic malaria microscopy. Part 1: learner’s guide. Geneva: World Health Organization; 2010.
16.
go back to reference Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995;52:565–8.CrossRefPubMed Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995;52:565–8.CrossRefPubMed
17.
go back to reference Aydin-Schmidt B, Xu W, Gonzalez IJ, Polley SD, Bell D, Shakely D, et al. Loop-mediated isothermal amplification (LAMP) accurately detects malaria DNA from filter paper blood samples of low density parasitaemias. PLoS ONE. 2014;9:e103905.CrossRefPubMedPubMedCentral Aydin-Schmidt B, Xu W, Gonzalez IJ, Polley SD, Bell D, Shakely D, et al. Loop-mediated isothermal amplification (LAMP) accurately detects malaria DNA from filter paper blood samples of low density parasitaemias. PLoS ONE. 2014;9:e103905.CrossRefPubMedPubMedCentral
18.
go back to reference Hopkins H, Gonzalez IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis. 2013;208:645–52.CrossRefPubMedPubMedCentral Hopkins H, Gonzalez IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis. 2013;208:645–52.CrossRefPubMedPubMedCentral
19.
go back to reference Muriuki D, Hahn S, Hexom B, Allan R. Cross-sectional survey of malaria prevalence in tsunami-affected districts of Aceh Province, Indonesia. Int J Emerg Med. 2012;5:11.CrossRefPubMedPubMedCentral Muriuki D, Hahn S, Hexom B, Allan R. Cross-sectional survey of malaria prevalence in tsunami-affected districts of Aceh Province, Indonesia. Int J Emerg Med. 2012;5:11.CrossRefPubMedPubMedCentral
20.
go back to reference Daily J. Malaria diagnostics technology and market landscape. 3rd ed. Geneva: UNITAID; 2016. Daily J. Malaria diagnostics technology and market landscape. 3rd ed. Geneva: UNITAID; 2016.
21.
go back to reference Sabot O, Cohen J, Hsiang M, Kahn J, Basu S, Tang L, et al. Malaria elimination 4: costs and financial feasibility of malaria elimination. Lancet. 2010;376:1604–15.CrossRefPubMedPubMedCentral Sabot O, Cohen J, Hsiang M, Kahn J, Basu S, Tang L, et al. Malaria elimination 4: costs and financial feasibility of malaria elimination. Lancet. 2010;376:1604–15.CrossRefPubMedPubMedCentral
23.
24.
go back to reference van Eijk AM, Ramanathapuram L, Sutton PL, Kanagaraj D, Sri Lakshmi Priya G, Ravishankaran S, et al. What is the value of reactive case detection in malaria control? A case-study in India and a systematic review. Malar J. 2016;15:67.CrossRefPubMedPubMedCentral van Eijk AM, Ramanathapuram L, Sutton PL, Kanagaraj D, Sri Lakshmi Priya G, Ravishankaran S, et al. What is the value of reactive case detection in malaria control? A case-study in India and a systematic review. Malar J. 2016;15:67.CrossRefPubMedPubMedCentral
25.
go back to reference Larson BA, Ngoma T, Silumbe K, Rutagwera M-RI, Hamainza B, Winters AM, et al. A framework for evaluating the costs of malaria elimination interventions: an application to reactive case detection in Southern Province of Zambia, 2014. Malar J. 2016;15:408.CrossRefPubMedPubMedCentral Larson BA, Ngoma T, Silumbe K, Rutagwera M-RI, Hamainza B, Winters AM, et al. A framework for evaluating the costs of malaria elimination interventions: an application to reactive case detection in Southern Province of Zambia, 2014. Malar J. 2016;15:408.CrossRefPubMedPubMedCentral
26.
go back to reference Imwong M, Hanchana S, Malleret B, Renia L, Day NP, Dondorp A, et al. High-throughput ultrasensitive molecular techniques for quantifying low-density malaria parasitemias. J Clin Microbiol. 2014;52:3303–9.CrossRefPubMedPubMedCentral Imwong M, Hanchana S, Malleret B, Renia L, Day NP, Dondorp A, et al. High-throughput ultrasensitive molecular techniques for quantifying low-density malaria parasitemias. J Clin Microbiol. 2014;52:3303–9.CrossRefPubMedPubMedCentral
27.
go back to reference Das S, Jang IK, Barney B, Peck Rek JC, Arinaitwe E, et al. Performance of a high-sensitivity rapid diagnostic test for Plasmodium falciparum malaria in asymptomatic individuals from Uganda and Myanmar and naïve human challenge infections. Am J Trop Med Hyg. 2017;97:1540–50.CrossRefPubMedPubMedCentral Das S, Jang IK, Barney B, Peck Rek JC, Arinaitwe E, et al. Performance of a high-sensitivity rapid diagnostic test for Plasmodium falciparum malaria in asymptomatic individuals from Uganda and Myanmar and naïve human challenge infections. Am J Trop Med Hyg. 2017;97:1540–50.CrossRefPubMedPubMedCentral
28.
go back to reference Silumbe K, Yukich JO, Hamainza B, Bennett A, Earle D, Kamuliwo M, et al. Costs and cost-effectiveness of a large-scale mass testing and treatment intervention for malaria in Southern Province, Zambia. Malar J. 2015;14:211.CrossRefPubMedPubMedCentral Silumbe K, Yukich JO, Hamainza B, Bennett A, Earle D, Kamuliwo M, et al. Costs and cost-effectiveness of a large-scale mass testing and treatment intervention for malaria in Southern Province, Zambia. Malar J. 2015;14:211.CrossRefPubMedPubMedCentral
29.
go back to reference Searle KM, Hamapumbu H, Lubinda J, Shields TM, Pinchoff J, Kobayashi T, et al. Evaluation of the operational challenges in implementing reactive screen-and-treat and implications of reactive case detection strategies for malaria elimination in a region of low transmission in southern Zambia. Malar J. 2016;15:412.CrossRefPubMedPubMedCentral Searle KM, Hamapumbu H, Lubinda J, Shields TM, Pinchoff J, Kobayashi T, et al. Evaluation of the operational challenges in implementing reactive screen-and-treat and implications of reactive case detection strategies for malaria elimination in a region of low transmission in southern Zambia. Malar J. 2016;15:412.CrossRefPubMedPubMedCentral
30.
go back to reference Newby G, Bennett A, Larson E, Cotter C, Shretta R, Phillips AA, et al. The path to eradication: a progress report on the malaria-eliminating countries. Lancet. 2016;387:1775–84.CrossRefPubMed Newby G, Bennett A, Larson E, Cotter C, Shretta R, Phillips AA, et al. The path to eradication: a progress report on the malaria-eliminating countries. Lancet. 2016;387:1775–84.CrossRefPubMed
31.
go back to reference UNITAID. Malaria diagnostics technology and market landscape. 3rd ed. Geneva: World Health Organization; 2016. UNITAID. Malaria diagnostics technology and market landscape. 3rd ed. Geneva: World Health Organization; 2016.
Metadata
Title
Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia
Authors
Brittany W. Zelman
Ranju Baral
Iska Zarlinda
Farah N. Coutrier
Kelly C. Sanders
Chris Cotter
Herdiana Herdiana
Bryan Greenhouse
Rima Shretta
Roly D. Gosling
Michelle S. Hsiang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2361-y

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue