Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Plasmodium Falciparum | Research

Genetic polymorphism of the N-terminal region in circumsporozoite surface protein of Plasmodium falciparum field isolates from Sudan

Authors: Nouh S. Mohamed, Musab M. Ali Albsheer, Hanadi Abdelbagi, Emanuel E. Siddig, Mona A. Mohamed, Abdallah E. Ahmed, Rihab Ali Omer, Mohamed S. Muneer, Ayman Ahmed, Hussam A. Osman, Mohamed S. Ali, Ibrahim M. Eisa, Mohamed M. Elbasheir

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Malaria caused by Plasmodium falciparum parasite is still known to be one of the most significant public health problems in sub-Saharan Africa. Genetic diversity of the Sudanese P. falciparum based on the diversity in the circumsporozoite surface protein (PfCSP) has not been previously studied. Therefore, this study aimed to investigate the genetic diversity of the N-terminal region of the pfcsp gene.

Methods

A cross-sectional molecular study was conducted; 50 blood samples have been analysed from different regions in Sudan. Patients were recruited from the health facilities of Khartoum, New Halfa, Red Sea, White Nile, Al Qadarif, Gezira, River Nile, and Ad Damazin during malaria transmission seasons between June to October and December to February 2017–2018. Microscopic and nested PCR was performed for detection of P. falciparum. Merozoite surface protein-1 was performed to differentiate single and multiple clonal infections. The N-terminal of the pfcsp gene has been sequenced using PCR-Sanger dideoxy method and analysed to sequences polymorphism including the numbers of haplotypes (H), segregating sites (S), haplotypes diversity (Hd) and the average number of nucleotide differences between two sequences (Pi) were obtained using the software DnaSP v5.10. As well as neutrality testing, Tajima’s D test, Fu and Li’s D and F statistics.

Results

PCR amplification resulted in 1200 bp of the pfcsp gene. Only 21 PCR products were successfully sequenced while 29 were presenting multiple clonal P. falciparum parasite were not sequenced. The analysis of the N-terminal region of the PfCSP amino acids sequence compared to the reference strains showed five different haplotypes. H1 consisted of 3D7, NF54, HB3 and 13 isolates of the Sudanese pfcsp. H2 comprised of 7G8, Dd2, MAD20, RO33, Wellcome strain, and 5 isolates of the Sudanese pfcsp. H3, H4, and H5 were found in 3 distinct isolates. Hd was 0.594 ± 0.065, and S was 12. The most common polymorphic site was A98G; other sites were D82Y, N83H, N83M, K85L, L86F, R87L, R87F, and A98S. Fu and Li’s D* test value was − 2.70818, Fu and Li’s F* test value was − 2.83907, indicating a role of negative balancing selection in the pfcsp N-terminal region. Analysis with the global pfcsp N-terminal regions showed the presence of 13 haplotypes. Haplotypes frequencies were 79.4%, 17.0%, 1.6% and 1.0% for H1, H2, H3 and H4, respectively. Remaining haplotypes frequency was 0.1% for each. Hd was 0.340 ± 0.017 with a Pi of 0.00485, S was 18 sites, and Pi was 0.00030. Amino acid polymorphisms identified in the N-terminal region of global pfcsp were present at eight positions (D82Y, N83H/M, K85L/T/N, L86F, R87L/F, A98G/V/S, D99G, and G100D).

Conclusions

Sudanese pfcsp N-terminal region was well-conserved with only a few polymorphic sites. Geographical distribution of genetic diversity showed high similarity to the African isolates, and this will help and contribute in the deployment of RTS,S, a PfCSP-based vaccine, in Sudan.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2017. Geneva: World Health Organization; 2017. WHO. World malaria report 2017. Geneva: World Health Organization; 2017.
3.
go back to reference Adeel AA, Elnour FAA, Elmardi KA, Abd-Elmajid MB, Elhelo MM, Ali MS, et al. High efficacy of artemether-lumefantrine and declining efficacy of artesunate + sulfadoxine–pyrimethamine against Plasmodium falciparum in Sudan (2010–2015): evidence from in vivo and molecular marker studies. Malar J. 2016;15:285.CrossRefPubMedPubMedCentral Adeel AA, Elnour FAA, Elmardi KA, Abd-Elmajid MB, Elhelo MM, Ali MS, et al. High efficacy of artemether-lumefantrine and declining efficacy of artesunate + sulfadoxine–pyrimethamine against Plasmodium falciparum in Sudan (2010–2015): evidence from in vivo and molecular marker studies. Malar J. 2016;15:285.CrossRefPubMedPubMedCentral
4.
go back to reference Mohamed AO, Hamid MMA, Mohamed OS, Elkando NS, Suliman A, Adam MA, et al. Efficacies of DHA–PPQ and AS/SP in patients with uncomplicated Plasmodium falciparum malaria in an area of an unstable seasonal transmission in Sudan. Malar J. 2017;16:163.CrossRefPubMedPubMedCentral Mohamed AO, Hamid MMA, Mohamed OS, Elkando NS, Suliman A, Adam MA, et al. Efficacies of DHA–PPQ and AS/SP in patients with uncomplicated Plasmodium falciparum malaria in an area of an unstable seasonal transmission in Sudan. Malar J. 2017;16:163.CrossRefPubMedPubMedCentral
5.
go back to reference Hamid MMA, Thriemer K, Elobied ME, Mahgoub NS, Boshara SA, Elsafi HM, et al. Low risk of recurrence following artesunate–sulphadoxine–pyrimethamine plus primaquine for uncomplicated Plasmodium falciparum and Plasmodium vivax infections in the Republic of the Sudan. Malar J. 2018;17:117.CrossRefPubMedPubMedCentral Hamid MMA, Thriemer K, Elobied ME, Mahgoub NS, Boshara SA, Elsafi HM, et al. Low risk of recurrence following artesunate–sulphadoxine–pyrimethamine plus primaquine for uncomplicated Plasmodium falciparum and Plasmodium vivax infections in the Republic of the Sudan. Malar J. 2018;17:117.CrossRefPubMedPubMedCentral
6.
go back to reference A-Elbasit IE, ElGhazali G, A-Elgadir TM, Hamad AA, Babiker HA, Elbashir MI, et al. Allelic polymorphism of MSP2 gene in severe P. falciparum malaria in an area of low and seasonal transmission. Parasitol Res. 2007;102:29–34.CrossRefPubMed A-Elbasit IE, ElGhazali G, A-Elgadir TM, Hamad AA, Babiker HA, Elbashir MI, et al. Allelic polymorphism of MSP2 gene in severe P. falciparum malaria in an area of low and seasonal transmission. Parasitol Res. 2007;102:29–34.CrossRefPubMed
7.
go back to reference Babiker HA, Creasey AM, Fenton B, Bayoumi RA, Arnot DE, Walliker D. Genetic diversity of Plasmodium falciparum in a village in eastern Sudan. 1. Diversity of enzymes, 2D-PAGE proteins and antigens. Trans R Soc Trop Med Hyg. 1991;85:572–7.CrossRefPubMed Babiker HA, Creasey AM, Fenton B, Bayoumi RA, Arnot DE, Walliker D. Genetic diversity of Plasmodium falciparum in a village in eastern Sudan. 1. Diversity of enzymes, 2D-PAGE proteins and antigens. Trans R Soc Trop Med Hyg. 1991;85:572–7.CrossRefPubMed
8.
go back to reference Babiker HA, Lines J, Hill WG, Walliker D. Population structure of Plasmodium falciparum in villages with different malaria endemicity in east Africa. Am J Trop Med Hyg. 1997;6:141–7.CrossRef Babiker HA, Lines J, Hill WG, Walliker D. Population structure of Plasmodium falciparum in villages with different malaria endemicity in east Africa. Am J Trop Med Hyg. 1997;6:141–7.CrossRef
9.
go back to reference Hamid MMA, Elamin AF, Albsheer MMA, Abdalla AA, Mahgoub NS, Mustafa SO, et al. Multiplicity of infection and genetic diversity of Plasmodium falciparum isolates from patients with uncomplicated and severe malaria in Gezira State, Sudan. Parasit Vectors. 2016;9:362.CrossRef Hamid MMA, Elamin AF, Albsheer MMA, Abdalla AA, Mahgoub NS, Mustafa SO, et al. Multiplicity of infection and genetic diversity of Plasmodium falciparum isolates from patients with uncomplicated and severe malaria in Gezira State, Sudan. Parasit Vectors. 2016;9:362.CrossRef
10.
go back to reference Hamid MMA, Mohammed SB, El Hassan IM. Genetic diversity of Plasmodium falciparum field isolates in Central Sudan inferred by PCR genotyping of merozoite surface protein 1 and 2. N Am J Med Sci. 2013;5:95–101.CrossRefPubMedPubMedCentral Hamid MMA, Mohammed SB, El Hassan IM. Genetic diversity of Plasmodium falciparum field isolates in Central Sudan inferred by PCR genotyping of merozoite surface protein 1 and 2. N Am J Med Sci. 2013;5:95–101.CrossRefPubMedPubMedCentral
11.
go back to reference Editorial. Human vaccines and immunotherapeutics: news. Hum Vaccin Immunother. 2015;11:1298–300. Editorial. Human vaccines and immunotherapeutics: news. Hum Vaccin Immunother. 2015;11:1298–300.
12.
go back to reference WHO. Malaria vaccine: WHO position paper, January 2016—recommendations. Vaccine. 2018;36:3576–7.CrossRef WHO. Malaria vaccine: WHO position paper, January 2016—recommendations. Vaccine. 2018;36:3576–7.CrossRef
13.
go back to reference RTS,S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.CrossRef RTS,S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.CrossRef
14.
go back to reference Zeeshan M, Alam MT, Vinayak S, Bora H, Tyagi RK, Alam MS, et al. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS ONE. 2012;7:e43430.CrossRefPubMedPubMedCentral Zeeshan M, Alam MT, Vinayak S, Bora H, Tyagi RK, Alam MS, et al. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS ONE. 2012;7:e43430.CrossRefPubMedPubMedCentral
15.
go back to reference Tanabe K, Mita T, Palacpac NM, Arisue N, Tougan T, Kawai S, et al. Within-population genetic diversity of Plasmodium falciparum vaccine candidate antigens reveals geographic distance from a Central sub-Saharan African origin. Vaccine. 2013;31:1334–9.CrossRefPubMed Tanabe K, Mita T, Palacpac NM, Arisue N, Tougan T, Kawai S, et al. Within-population genetic diversity of Plasmodium falciparum vaccine candidate antigens reveals geographic distance from a Central sub-Saharan African origin. Vaccine. 2013;31:1334–9.CrossRefPubMed
16.
go back to reference Lê HG, Kang J-M, Moe M, Jun H, Thái TL, Lee J, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar. Malar J. 2018;17:361.CrossRefPubMedPubMedCentral Lê HG, Kang J-M, Moe M, Jun H, Thái TL, Lee J, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar. Malar J. 2018;17:361.CrossRefPubMedPubMedCentral
17.
go back to reference Hoffman SL, Wang R, Epstein JE, Cohen JD. Methods for vaccinating against malaria. Google Patents; 2012. Hoffman SL, Wang R, Epstein JE, Cohen JD. Methods for vaccinating against malaria. Google Patents; 2012.
18.
go back to reference Pinzon-Ortiz C, Friedman J, Esko J, Sinnis P. The binding of the circumsporozoite protein to cell surface heparan sulfate proteoglycans is required for Plasmodium sporozoite attachment to target cells. J Biol Chem. 2001;276:26784–91.CrossRefPubMed Pinzon-Ortiz C, Friedman J, Esko J, Sinnis P. The binding of the circumsporozoite protein to cell surface heparan sulfate proteoglycans is required for Plasmodium sporozoite attachment to target cells. J Biol Chem. 2001;276:26784–91.CrossRefPubMed
19.
go back to reference Rathore D, Sacci JB, de la Vega P, McCutchan TF. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J Biol Chem. 2002;277:7092–8.CrossRefPubMed Rathore D, Sacci JB, de la Vega P, McCutchan TF. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J Biol Chem. 2002;277:7092–8.CrossRefPubMed
20.
go back to reference Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med. 2011;208:341–56.CrossRefPubMedPubMedCentral Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med. 2011;208:341–56.CrossRefPubMedPubMedCentral
21.
go back to reference Egan JE, Hoffman SL, Haynes JD, Sadoff JC, Schneider I, Grau GE, et al. Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 1993;49:166–73.CrossRefPubMed Egan JE, Hoffman SL, Haynes JD, Sadoff JC, Schneider I, Grau GE, et al. Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 1993;49:166–73.CrossRefPubMed
22.
go back to reference Nardin EH, Nussenzweig RS, McGregor IA, Bryan JH. Antibodies to sporozoites: their frequent occurrence in individuals living in an area of hyperendemic malaria. Science. 1979;206:597–9.CrossRefPubMed Nardin EH, Nussenzweig RS, McGregor IA, Bryan JH. Antibodies to sporozoites: their frequent occurrence in individuals living in an area of hyperendemic malaria. Science. 1979;206:597–9.CrossRefPubMed
23.
go back to reference Calvo-Calle JM, De Oliveira G, Clavijo P, Maracic M, Tam J, Lu Y, et al. Immunogenicity of multiple antigen peptides containing B and non-repeat T cell epitopes of the circumsporozoite protein of Plasmodium falciparum. J Immunol. 1993;150:1403–12.PubMed Calvo-Calle JM, De Oliveira G, Clavijo P, Maracic M, Tam J, Lu Y, et al. Immunogenicity of multiple antigen peptides containing B and non-repeat T cell epitopes of the circumsporozoite protein of Plasmodium falciparum. J Immunol. 1993;150:1403–12.PubMed
24.
go back to reference Enea V, Ellis J, Zavala F, Arnot DE, Asavanich A, Masuda A, et al. DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science. 1984;225:628–30.CrossRefPubMed Enea V, Ellis J, Zavala F, Arnot DE, Asavanich A, Masuda A, et al. DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science. 1984;225:628–30.CrossRefPubMed
25.
go back to reference Hughes AL. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics. 1991;127:345–53.PubMedPubMedCentral Hughes AL. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics. 1991;127:345–53.PubMedPubMedCentral
26.
go back to reference Waitumbi JN, Anyona SB, Hunja CW, Kifude CM, Polhemus ME, Walsh DS, et al. Impact of RTS, S/AS02A and RTS, S/AS01B on genotypes of P. falciparum in adults participating in a malaria vaccine clinical trial. PLoS ONE. 2009;4:e7849.CrossRefPubMedPubMedCentral Waitumbi JN, Anyona SB, Hunja CW, Kifude CM, Polhemus ME, Walsh DS, et al. Impact of RTS, S/AS02A and RTS, S/AS01B on genotypes of P. falciparum in adults participating in a malaria vaccine clinical trial. PLoS ONE. 2009;4:e7849.CrossRefPubMedPubMedCentral
27.
go back to reference Bailey JA, Mvalo T, Aragam N, Weiser M, Congdon S, Kamwendo D, et al. Use of massively parallel pyrosequencing to evaluate the diversity of and selection on Plasmodium falciparum csp T-cell epitopes in Lilongwe, Malawi. J Infect Dis. 2012;06:580–7.CrossRef Bailey JA, Mvalo T, Aragam N, Weiser M, Congdon S, Kamwendo D, et al. Use of massively parallel pyrosequencing to evaluate the diversity of and selection on Plasmodium falciparum csp T-cell epitopes in Lilongwe, Malawi. J Infect Dis. 2012;06:580–7.CrossRef
28.
go back to reference Neafsey DE, Schaffner SF, Volkman SK, Park D, Montgomery P, Milner DA, et al. Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biol. 2008;9:R171.CrossRefPubMedPubMedCentral Neafsey DE, Schaffner SF, Volkman SK, Park D, Montgomery P, Milner DA, et al. Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biol. 2008;9:R171.CrossRefPubMedPubMedCentral
29.
go back to reference Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487:375.CrossRefPubMedPubMedCentral Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487:375.CrossRefPubMedPubMedCentral
30.
go back to reference Escalante AA, Grebert HM, Isea R, Goldman IF, Basco L, Magris M, et al. A study of genetic diversity in the gene encoding the circumsporozoite protein (CSP) of Plasmodium falciparum from different transmission areas—XVI. Asembo Bay Cohort Project. Mol Biochem Parasitol. 2002;125:83–90.CrossRefPubMed Escalante AA, Grebert HM, Isea R, Goldman IF, Basco L, Magris M, et al. A study of genetic diversity in the gene encoding the circumsporozoite protein (CSP) of Plasmodium falciparum from different transmission areas—XVI. Asembo Bay Cohort Project. Mol Biochem Parasitol. 2002;125:83–90.CrossRefPubMed
31.
go back to reference WHO. Guidelines for the treatment of malaria. Geneva: World Health Organization; 2015. WHO. Guidelines for the treatment of malaria. Geneva: World Health Organization; 2015.
32.
go back to reference Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol. 1993;58:283–92.CrossRefPubMed Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol. 1993;58:283–92.CrossRefPubMed
33.
go back to reference Ntoumi F, Ngoundou-Landji J, Lekoulou F, Luty A, Deloron P, Ringwald P. Site-based study on polymorphism of Plasmodium falciparum MSP-1 and MSP-2 genes in isolates from two villages in Central Africa. Parassitologia. 2000;42:197–203.PubMed Ntoumi F, Ngoundou-Landji J, Lekoulou F, Luty A, Deloron P, Ringwald P. Site-based study on polymorphism of Plasmodium falciparum MSP-1 and MSP-2 genes in isolates from two villages in Central Africa. Parassitologia. 2000;42:197–203.PubMed
34.
go back to reference Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN, editor. Mammalian protein metabolism III. New York: Academic Press; 1969. p. 21–132.CrossRef Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN, editor. Mammalian protein metabolism III. New York: Academic Press; 1969. p. 21–132.CrossRef
35.
go back to reference Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.CrossRefPubMed Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.CrossRefPubMed
36.
go back to reference Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.PubMedPubMedCentral Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.PubMedPubMedCentral
38.
go back to reference Babiker H, Abdel-Muhsin A, Hamad A, Mackinnon M, Hill W, Walliker D. Population dynamics of Plasmodium falciparum in an unstable malaria area of eastern Sudan. Parasitology. 2000;120:105–11.CrossRefPubMed Babiker H, Abdel-Muhsin A, Hamad A, Mackinnon M, Hill W, Walliker D. Population dynamics of Plasmodium falciparum in an unstable malaria area of eastern Sudan. Parasitology. 2000;120:105–11.CrossRefPubMed
39.
go back to reference Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, et al. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect Dis. 2005;192:870–7.CrossRefPubMed Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, et al. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect Dis. 2005;192:870–7.CrossRefPubMed
40.
go back to reference Putaporntip C, Jongwutiwes S, Hughes AL. Natural selection maintains a stable polymorphism at the circumsporozoite protein locus of Plasmodium falciparum in a low endemic area. Infect Genet Evol. 2009;9:567–73.CrossRefPubMedPubMedCentral Putaporntip C, Jongwutiwes S, Hughes AL. Natural selection maintains a stable polymorphism at the circumsporozoite protein locus of Plasmodium falciparum in a low endemic area. Infect Genet Evol. 2009;9:567–73.CrossRefPubMedPubMedCentral
41.
go back to reference Zakeri S, Avazalipoor M, Mehrizi AA, Djadid ND, Snounou G. Restricted T-cell epitope diversity in the circumsporozoite protein from Plasmodium falciparum populations prevalent in Iran. Am J Trop Med Hyg. 2007;76:1046–51.CrossRefPubMed Zakeri S, Avazalipoor M, Mehrizi AA, Djadid ND, Snounou G. Restricted T-cell epitope diversity in the circumsporozoite protein from Plasmodium falciparum populations prevalent in Iran. Am J Trop Med Hyg. 2007;76:1046–51.CrossRefPubMed
42.
go back to reference Plassmeyer M, Reiter K, Shimp R Jr, Kotova S, Smith P, Hurt D. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem. 2009;284:26951–63.CrossRefPubMedPubMedCentral Plassmeyer M, Reiter K, Shimp R Jr, Kotova S, Smith P, Hurt D. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem. 2009;284:26951–63.CrossRefPubMedPubMedCentral
43.
go back to reference Pringle JC, Carpi G, Almagro-Garcia J, Zhu SJ, Kobayashi T, Mulenga M, et al. RTS, S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally. Sci Rep. 2018;8:6622.CrossRefPubMedPubMedCentral Pringle JC, Carpi G, Almagro-Garcia J, Zhu SJ, Kobayashi T, Mulenga M, et al. RTS, S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally. Sci Rep. 2018;8:6622.CrossRefPubMedPubMedCentral
45.
go back to reference Ancsin JB, Kisilevsky R. A binding site for highly sulfated heparan sulfate is identified in the amino-terminus of the circumsporozoite protein: significance for malarial sporozoite attachment to hepatocytes. J Biol Chem. 2004;279:21824–32.CrossRefPubMed Ancsin JB, Kisilevsky R. A binding site for highly sulfated heparan sulfate is identified in the amino-terminus of the circumsporozoite protein: significance for malarial sporozoite attachment to hepatocytes. J Biol Chem. 2004;279:21824–32.CrossRefPubMed
46.
go back to reference Coppi A, Pinzon-Ortiz C, Hutter C, Sinnis P. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J Exp Med. 2005;201:27–33.CrossRefPubMedPubMedCentral Coppi A, Pinzon-Ortiz C, Hutter C, Sinnis P. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J Exp Med. 2005;201:27–33.CrossRefPubMedPubMedCentral
47.
go back to reference Rathore D, Nagarkatti R, Jani D, Chattopadhyay R, de la Vega P, Kumar S, et al. An immunologically cryptic epitope of Plasmodium falciparum circumsporozoite protein facilitates liver cell recognition and induces protective antibodies that block liver cell invasion. J Biol Chem. 2005;280:20524–9.CrossRefPubMed Rathore D, Nagarkatti R, Jani D, Chattopadhyay R, de la Vega P, Kumar S, et al. An immunologically cryptic epitope of Plasmodium falciparum circumsporozoite protein facilitates liver cell recognition and induces protective antibodies that block liver cell invasion. J Biol Chem. 2005;280:20524–9.CrossRefPubMed
48.
go back to reference Conway DJ. Natural selection on polymorphic malaria antigens and the search for a vaccine. Parasitol Today. 1997;13:26–9.CrossRefPubMed Conway DJ. Natural selection on polymorphic malaria antigens and the search for a vaccine. Parasitol Today. 1997;13:26–9.CrossRefPubMed
49.
go back to reference Garçon N, Heppner DG, Cohen J. Development of RTS, S/AS02: a purified subunit-based malaria vaccine candidate formulated with a novel adjuvant. Expert Rev Vaccines. 2003;2:231–8.CrossRefPubMed Garçon N, Heppner DG, Cohen J. Development of RTS, S/AS02: a purified subunit-based malaria vaccine candidate formulated with a novel adjuvant. Expert Rev Vaccines. 2003;2:231–8.CrossRefPubMed
50.
go back to reference Potocnjak P, Yoshida N, Nussenzweig RS, Nussenzweig V. Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. J Exp Med. 1980;151:1504–13.CrossRefPubMed Potocnjak P, Yoshida N, Nussenzweig RS, Nussenzweig V. Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. J Exp Med. 1980;151:1504–13.CrossRefPubMed
51.
go back to reference Shi Y, Udhayakumar V, Alpers M, Povoa M, Oloo A, Ruebush T, et al. Natural antibody responses against the non-repeat-sequence-based B-cell epitopes of the Plasmodium falciparum circumsporozoite protein. Infect Immun. 1993;61:2425–33.PubMedPubMedCentral Shi Y, Udhayakumar V, Alpers M, Povoa M, Oloo A, Ruebush T, et al. Natural antibody responses against the non-repeat-sequence-based B-cell epitopes of the Plasmodium falciparum circumsporozoite protein. Infect Immun. 1993;61:2425–33.PubMedPubMedCentral
52.
go back to reference Udhayakumar V, Ongecha JM, Shi YP, Aidoo M, Orago A, Oloo AJ, et al. Cytotoxic T cell reactivity and HLA-B35 binding of the variant Plasmodium falciparum circumsporozoite protein CD8+ CTL epitope in naturally exposed Kenyan adults. Eur J Immunol. 1997;27:1952–7.CrossRefPubMed Udhayakumar V, Ongecha JM, Shi YP, Aidoo M, Orago A, Oloo AJ, et al. Cytotoxic T cell reactivity and HLA-B35 binding of the variant Plasmodium falciparum circumsporozoite protein CD8+ CTL epitope in naturally exposed Kenyan adults. Eur J Immunol. 1997;27:1952–7.CrossRefPubMed
Metadata
Title
Genetic polymorphism of the N-terminal region in circumsporozoite surface protein of Plasmodium falciparum field isolates from Sudan
Authors
Nouh S. Mohamed
Musab M. Ali Albsheer
Hanadi Abdelbagi
Emanuel E. Siddig
Mona A. Mohamed
Abdallah E. Ahmed
Rihab Ali Omer
Mohamed S. Muneer
Ayman Ahmed
Hussam A. Osman
Mohamed S. Ali
Ibrahim M. Eisa
Mohamed M. Elbasheir
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2970-0

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue