Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Chloroquin | Research

Genotypes and phenotypes of resistance in Ecuadorian Plasmodium falciparum

Authors: Gabriela Valenzuela, L. Enrique Castro, Julio Valencia-Zamora, Claudia A. Vera-Arias, Petra Rohrbach, Fabián E. Sáenz

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Malaria continues to be endemic in the coast and Amazon regions of Ecuador. Clarifying current Plasmodium falciparum resistance in the country will support malaria elimination efforts. In this study, Ecuadorian P. falciparum parasites were analysed to determine their drug resistance genotypes and phenotypes.

Methods

Molecular analyses were performed to search for mutations in known resistance markers (Pfcrt, Pfdhfr, Pfdhps, Pfmdr1, k13). Pfmdr1 copy number was determined by qPCR. PFMDR1 transporter activity was characterized in live parasites using live cell imaging in combination with the Fluo-4 transport assay. Chloroquine, quinine, lumefantrine, mefloquine, dihydroartemisinin, and artemether sensitivities were measured by in vitro assays.

Results

The majority of samples from this study presented the CVMNT genotype for Pfcrt (72–26), NEDF SDFD mutations in Pfmdr1 and wild type genotypes for Pfdhfr, Pfdhps and k13. The Ecuadorian P. falciparum strain ESM-2013 showed in vitro resistance to chloroquine, but sensitivity to quinine, lumefantrine, mefloquine, dihydroartemisinin and artemether. In addition, transport of the fluorochrome Fluo-4 from the cytosol into the digestive vacuole (DV) of the ESM-2013 strain was minimally detected in the DV. All analysed samples revealed one copy of Pfmdr1.

Conclusion

This study indicates that Ecuadorian parasites presented the genotype and phenotype for chloroquine resistance and were found to be sensitive to SP, artemether-lumefantrine, quinine, mefloquine, and dihydroartemisinin. The results suggest that the current malaria treatment employed in the country remains effective. This study clarifies the status of anti-malarial resistance in Ecuador and informs the P. falciparum elimination campaigns in the country.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. World malaria report. Geneva: World Health Organization; 2016. World Health Organization. World malaria report. Geneva: World Health Organization; 2016.
2.
go back to reference MSP. Gaceta Epidemiológica Semanal No. 52: Ministerio de Salud Pública del Ecuador. Quito: MSP; 2017. MSP. Gaceta Epidemiológica Semanal No. 52: Ministerio de Salud Pública del Ecuador. Quito: MSP; 2017.
3.
go back to reference PAHO. Report on the situation of malaria in the Americas, 2000–2015. Geneva: World Health Organization; 2016. PAHO. Report on the situation of malaria in the Americas, 2000–2015. Geneva: World Health Organization; 2016.
4.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2018. WHO. World malaria report. Geneva: World Health Organization; 2018.
5.
go back to reference Recht J, Siqueira AM, Monteiro WM, Herrera SM, Herrera S, Lacerda MVG. Malaria in Brazil, Colombia, Peru and Venezuela. Current challenges in malaria control and elimination. Malar J. 2017;16:273.PubMedPubMedCentralCrossRef Recht J, Siqueira AM, Monteiro WM, Herrera SM, Herrera S, Lacerda MVG. Malaria in Brazil, Colombia, Peru and Venezuela. Current challenges in malaria control and elimination. Malar J. 2017;16:273.PubMedPubMedCentralCrossRef
6.
go back to reference Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell. 2000;6:861–71.PubMedPubMedCentralCrossRef Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell. 2000;6:861–71.PubMedPubMedCentralCrossRef
7.
go back to reference Pelleau S, Moss EL, Dhingra SK, Volney B, Casteras J, Gabryszewski SJ, et al. Adaptive evolution of malaria parasites in French Guiana: reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc Natl Acad Sci USA. 2015;112:11672–7.PubMedCrossRefPubMedCentral Pelleau S, Moss EL, Dhingra SK, Volney B, Casteras J, Gabryszewski SJ, et al. Adaptive evolution of malaria parasites in French Guiana: reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc Natl Acad Sci USA. 2015;112:11672–7.PubMedCrossRefPubMedCentral
8.
go back to reference Cortese JF, Caraballo A, Contreras CE, Plowe CV. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis. 2002;186:999–1006.PubMedCrossRef Cortese JF, Caraballo A, Contreras CE, Plowe CV. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis. 2002;186:999–1006.PubMedCrossRef
9.
go back to reference Corredor V, Murillo C, Echeverry DF, Benavides J, Pearce RJ, Roper C, et al. Origin and dissemination across the Colombian Andes mountain range of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum. Antimicrob Agents Chemother. 2010;54:3121–5.PubMedPubMedCentralCrossRef Corredor V, Murillo C, Echeverry DF, Benavides J, Pearce RJ, Roper C, et al. Origin and dissemination across the Colombian Andes mountain range of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum. Antimicrob Agents Chemother. 2010;54:3121–5.PubMedPubMedCentralCrossRef
10.
go back to reference Griffing SM, Mixson-Hayden T, Sridaran S, Alam MT, McCollum AM, Cabezas C, et al. South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS ONE. 2011;6:e23486.PubMedPubMedCentralCrossRef Griffing SM, Mixson-Hayden T, Sridaran S, Alam MT, McCollum AM, Cabezas C, et al. South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS ONE. 2011;6:e23486.PubMedPubMedCentralCrossRef
11.
go back to reference Sridaran S, Rodriguez B, Mercedes Soto A, Macedo De Oliveira A, Udhayakumar V. Molecular analysis of chloroquine and sulfadoxine-pyrimethamine resistance-associated alleles in Plasmodium falciparum isolates from Nicaragua. Am J Trop Med Hyg. 2014;90:840–5.PubMedPubMedCentralCrossRef Sridaran S, Rodriguez B, Mercedes Soto A, Macedo De Oliveira A, Udhayakumar V. Molecular analysis of chloroquine and sulfadoxine-pyrimethamine resistance-associated alleles in Plasmodium falciparum isolates from Nicaragua. Am J Trop Med Hyg. 2014;90:840–5.PubMedPubMedCentralCrossRef
12.
go back to reference Price RN, Uhlemann A-C, Brockman A, McGready R, Ashley E, Phaipun L, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364:438–47.PubMedPubMedCentralCrossRef Price RN, Uhlemann A-C, Brockman A, McGready R, Ashley E, Phaipun L, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364:438–47.PubMedPubMedCentralCrossRef
13.
go back to reference Veiga MI, Dhingra SK, Henrich PP, Straimer J, Gnädig N, Uhlemann A-C, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun. 2016;7:11553.PubMedPubMedCentralCrossRef Veiga MI, Dhingra SK, Henrich PP, Straimer J, Gnädig N, Uhlemann A-C, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun. 2016;7:11553.PubMedPubMedCentralCrossRef
14.
go back to reference Ferreira ID, do Rosário VE, Cravo PV. Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum. Malar J. 2006;5:1.PubMedPubMedCentralCrossRef Ferreira ID, do Rosário VE, Cravo PV. Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum. Malar J. 2006;5:1.PubMedPubMedCentralCrossRef
15.
go back to reference Aponte S, Patricia Guerra Á, Álvarez-Larrotta C, Bernal S, Restrepo C, González C, et al. Baseline in vivo, ex vivo and molecular responses of Plasmodium falciparum to artemether and lumefantrine in three endemic zones for malaria in Colombia. Trans R Soc Trop Med Hyg. 2017;111:71–80.PubMedCrossRef Aponte S, Patricia Guerra Á, Álvarez-Larrotta C, Bernal S, Restrepo C, González C, et al. Baseline in vivo, ex vivo and molecular responses of Plasmodium falciparum to artemether and lumefantrine in three endemic zones for malaria in Colombia. Trans R Soc Trop Med Hyg. 2017;111:71–80.PubMedCrossRef
16.
go back to reference Costa GL, Amaral LC, Fontes CJF, Carvalho LH, de Brito CFA, de Sousa TN. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar J. 2017;16:152.PubMedPubMedCentralCrossRef Costa GL, Amaral LC, Fontes CJF, Carvalho LH, de Brito CFA, de Sousa TN. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar J. 2017;16:152.PubMedPubMedCentralCrossRef
17.
go back to reference Bacon DJ, McCollum AM, Griffing SM, Salas C, Soberon V, Santolalla M, et al. Dynamics of malaria drug resistance patterns in the Amazon Basin region following changes in Peruvian national treatment policy for uncomplicated malaria. Antimicrob Agents Chemother. 2009;53:2042–51.PubMedPubMedCentralCrossRef Bacon DJ, McCollum AM, Griffing SM, Salas C, Soberon V, Santolalla M, et al. Dynamics of malaria drug resistance patterns in the Amazon Basin region following changes in Peruvian national treatment policy for uncomplicated malaria. Antimicrob Agents Chemother. 2009;53:2042–51.PubMedPubMedCentralCrossRef
18.
go back to reference Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.PubMedCrossRef Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.PubMedCrossRef
19.
go back to reference Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336:79–82.PubMedPubMedCentralCrossRef Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336:79–82.PubMedPubMedCentralCrossRef
20.
go back to reference Chenet SM, Schneider KA, Villegas L, Escalante AA. Local population structure of Plasmodium: impact on malaria control and elimination. Malar J. 2012;11:412.PubMedPubMedCentralCrossRef Chenet SM, Schneider KA, Villegas L, Escalante AA. Local population structure of Plasmodium: impact on malaria control and elimination. Malar J. 2012;11:412.PubMedPubMedCentralCrossRef
21.
go back to reference Chenet SM, Okoth SA, Kelley J, Lucchi N, Huber CS, Vreden S, et al. Molecular profile of malaria drug resistance markers of Plasmodium falciparum in Suriname. Antimicrob Agents Chemother. 2017;61:e02655-16.PubMedPubMedCentralCrossRef Chenet SM, Okoth SA, Kelley J, Lucchi N, Huber CS, Vreden S, et al. Molecular profile of malaria drug resistance markers of Plasmodium falciparum in Suriname. Antimicrob Agents Chemother. 2017;61:e02655-16.PubMedPubMedCentralCrossRef
22.
go back to reference Aponte SL, Díaz G, Pava Z, Echeverry DF, Ibarguen D, Rios M, et al. Sentinel network for monitoring in vitro susceptibility of Plasmodium falciparum to antimalarial drugs in Colombia: a proof of concept. Mem Inst Oswaldo Cruz. 2011;106:123–9.PubMedCrossRef Aponte SL, Díaz G, Pava Z, Echeverry DF, Ibarguen D, Rios M, et al. Sentinel network for monitoring in vitro susceptibility of Plasmodium falciparum to antimalarial drugs in Colombia: a proof of concept. Mem Inst Oswaldo Cruz. 2011;106:123–9.PubMedCrossRef
23.
go back to reference Segurado A, Di Santi S, Shiroma M. In vivo and in vitro Plasmodium falciparum resistance to chloroquine, amodiaquine and quinine in the Brazilian Amazon. Rev Inst Med Trop São Paulo. 1997;39:85–90.PubMedCrossRef Segurado A, Di Santi S, Shiroma M. In vivo and in vitro Plasmodium falciparum resistance to chloroquine, amodiaquine and quinine in the Brazilian Amazon. Rev Inst Med Trop São Paulo. 1997;39:85–90.PubMedCrossRef
24.
go back to reference White J, Mascarenhas A, Pereira L, Dash R, Walke JT, Gawas P, et al. In vitro adaptation of Plasmodium falciparum reveal variations in cultivability. Malar J. 2016;15:33.PubMedPubMedCentralCrossRef White J, Mascarenhas A, Pereira L, Dash R, Walke JT, Gawas P, et al. In vitro adaptation of Plasmodium falciparum reveal variations in cultivability. Malar J. 2016;15:33.PubMedPubMedCentralCrossRef
25.
go back to reference Arróspide N, Hijar-Guerra G, de Mora D, Diaz-Cortéz CE, Veloz-Perez R, Gutierrez S, et al. Alelos mutantes asociados a la resistencia a cloroquina y sulfadoxina-pirimetamina en Plasmodium falciparum de las fronteras Ecuador-Perú y Ecuador-Colombia. Rev Peru Med Exp Salud Pública. 2014;31:282–7.PubMed Arróspide N, Hijar-Guerra G, de Mora D, Diaz-Cortéz CE, Veloz-Perez R, Gutierrez S, et al. Alelos mutantes asociados a la resistencia a cloroquina y sulfadoxina-pirimetamina en Plasmodium falciparum de las fronteras Ecuador-Perú y Ecuador-Colombia. Rev Peru Med Exp Salud Pública. 2014;31:282–7.PubMed
26.
go back to reference Sáenz FE, Morton LC, Okoth SA, Valenzuela G, Vera-Arias CA, Vélez-Álvarez E, et al. Clonal population expansion in an outbreak of Plasmodium falciparum on the northwest coast of Ecuador. Malar J. 2015;14:497.PubMedCentralCrossRef Sáenz FE, Morton LC, Okoth SA, Valenzuela G, Vera-Arias CA, Vélez-Álvarez E, et al. Clonal population expansion in an outbreak of Plasmodium falciparum on the northwest coast of Ecuador. Malar J. 2015;14:497.PubMedCentralCrossRef
27.
go back to reference Sá JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci USA. 2009;106:18883–9.PubMedCrossRefPubMedCentral Sá JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci USA. 2009;106:18883–9.PubMedCrossRefPubMedCentral
28.
go back to reference Moll K, Kaneko A, Scherf A, Wahlgren M. Methods in malaria research. 6th ed. Manassas: MR4/ATCC; 2013. Moll K, Kaneko A, Scherf A, Wahlgren M. Methods in malaria research. 6th ed. Manassas: MR4/ATCC; 2013.
29.
go back to reference Snounou G. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol. 1996;50:263–91.PubMed Snounou G. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol. 1996;50:263–91.PubMed
30.
go back to reference Friedrich O, Reiling SJ, Wunderlich J, Rohrbach P. Assessment of Plasmodium falciparum PfMDR1 transport rates using Fluo-4. J Cell Mol Med. 2014;18:1851–62.PubMedPubMedCentralCrossRef Friedrich O, Reiling SJ, Wunderlich J, Rohrbach P. Assessment of Plasmodium falciparum PfMDR1 transport rates using Fluo-4. J Cell Mol Med. 2014;18:1851–62.PubMedPubMedCentralCrossRef
33.
go back to reference Rohrbach P, Sanchez CP, Hayton K, Friedrich O, Patel J, Sidhu ABS, et al. Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum. EMBO J. 2006;25:3000–11.PubMedPubMedCentralCrossRef Rohrbach P, Sanchez CP, Hayton K, Friedrich O, Patel J, Sidhu ABS, et al. Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum. EMBO J. 2006;25:3000–11.PubMedPubMedCentralCrossRef
34.
go back to reference MSP. Situación de la malaria en el Ecuador. Gaceta Ministerio de Salud Pública del Ecuador. Quito, 2013. MSP. Situación de la malaria en el Ecuador. Gaceta Ministerio de Salud Pública del Ecuador. Quito, 2013.
35.
go back to reference WHO. Country epidemiological profile: Ecuador. Geneva: World Health Organization; 2018. WHO. Country epidemiological profile: Ecuador. Geneva: World Health Organization; 2018.
37.
go back to reference Li J, Chen J, Xie D, Monte-Nguba S, Eyi JUM, Matesa RA, et al. High prevalence of pfmdr1 N86Y and Y184F mutations in Plasmodium falciparum isolates from Bioko island, Equatorial Guinea. Pathog Glob Health. 2014;108:339–43.PubMedPubMedCentralCrossRef Li J, Chen J, Xie D, Monte-Nguba S, Eyi JUM, Matesa RA, et al. High prevalence of pfmdr1 N86Y and Y184F mutations in Plasmodium falciparum isolates from Bioko island, Equatorial Guinea. Pathog Glob Health. 2014;108:339–43.PubMedPubMedCentralCrossRef
38.
go back to reference Gomez LEA, Jurado MH, Cambon N. Randomised efficacy and safety study of two 3-day artesunate rectal capsule/mefloquine regimens versus artesunate alone for uncomplicated malaria in Ecuadorian children. Acta Trop. 2003;89:47–53.PubMedCrossRef Gomez LEA, Jurado MH, Cambon N. Randomised efficacy and safety study of two 3-day artesunate rectal capsule/mefloquine regimens versus artesunate alone for uncomplicated malaria in Ecuadorian children. Acta Trop. 2003;89:47–53.PubMedCrossRef
39.
go back to reference Patel SK, George L-B, Prasanth Kumar S, Highland HN, Jasrai YT, Pandya HA, et al. A Computational approach towards the understanding of Plasmodium falciparum multidrug resistance protein 1. ISRN Bioinforma. 2013;2013:437168.CrossRef Patel SK, George L-B, Prasanth Kumar S, Highland HN, Jasrai YT, Pandya HA, et al. A Computational approach towards the understanding of Plasmodium falciparum multidrug resistance protein 1. ISRN Bioinforma. 2013;2013:437168.CrossRef
40.
go back to reference Sidhu ABS, Uhlemann A-C, Valderramos SG, Valderramos J-C, Krishna S, Fidock DA. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis. 2006;194:528–35.PubMedCrossRef Sidhu ABS, Uhlemann A-C, Valderramos SG, Valderramos J-C, Krishna S, Fidock DA. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis. 2006;194:528–35.PubMedCrossRef
41.
go back to reference Sáenz FE, Arévalo-Cortés A, Valenzuela G, Vallejo AF, Castellanos A, Poveda-Loayza AC, et al. Malaria epidemiology in low-endemicity areas of the northern coast of Ecuador: high prevalence of asymptomatic infections. Malar J. 2017;16:300.PubMedPubMedCentralCrossRef Sáenz FE, Arévalo-Cortés A, Valenzuela G, Vallejo AF, Castellanos A, Poveda-Loayza AC, et al. Malaria epidemiology in low-endemicity areas of the northern coast of Ecuador: high prevalence of asymptomatic infections. Malar J. 2017;16:300.PubMedPubMedCentralCrossRef
42.
go back to reference Ladeia-Andrade S, de Melo GNP, de Souza-Lima RD, Salla LC, Bastos MS, Rodrigues PT, et al. No clinical or molecular evidence of Plasmodium falciparum resistance to artesunate–mefloquine in Northwestern Brazil. Am J Trop Med Hyg. 2016;95:148–54.PubMedPubMedCentralCrossRef Ladeia-Andrade S, de Melo GNP, de Souza-Lima RD, Salla LC, Bastos MS, Rodrigues PT, et al. No clinical or molecular evidence of Plasmodium falciparum resistance to artesunate–mefloquine in Northwestern Brazil. Am J Trop Med Hyg. 2016;95:148–54.PubMedPubMedCentralCrossRef
Metadata
Title
Genotypes and phenotypes of resistance in Ecuadorian Plasmodium falciparum
Authors
Gabriela Valenzuela
L. Enrique Castro
Julio Valencia-Zamora
Claudia A. Vera-Arias
Petra Rohrbach
Fabián E. Sáenz
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3044-z

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.