Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

Smallest Anopheles farauti occur during the peak transmission season in the Solomon Islands

Authors: Kimberley McLaughlin, Tanya L. Russell, Allan Apairamo, Hugo Bugoro, Jance Oscar, Robert D. Cooper, Nigel W. Beebe, Scott A. Ritchie, Thomas R. Burkot

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Malaria transmission varies in intensity amongst Solomon Island villages where Anopheles farauti is the only vector. This variation in transmission intensity might be explained by density-dependent processes during An. farauti larval development, as density dependence can impact adult size with associated fitness costs and daily survivorship.

Methods

Adult anophelines were sampled from six villages in Western and Central Provinces, Solomon Islands between March 2014 and February 2017. The size of females was estimated by measuring wing lengths, and then analysed for associations with biting densities and rainfall.

Results

In the Solomon Islands, three anopheline species, An. farauti, Anopheles hinesorum and Anopheles lungae, differed in size. The primary malaria vector, An. farauti, varied significantly in size among villages. Greater rainfall was directly associated with higher densities of An. farauti biting rates, but inversely associated with body size with the smallest mean sized mosquitoes present during the peak transmission period. A measurable association between body size and survivorship was not found.

Conclusions

Density dependent effects are likely impacting the size of adult An. farauti emerging from a range of larval habitats. The data suggest that rainfall increases An. farauti numbers and that these more abundant mosquitoes are significantly smaller in size, but without any reduced survivorship being associated with smaller size. The higher malaria transmission rate in a high malaria focus village appears to be determined more by vector numbers than size or survivorship of the vectors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRef Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRef
2.
go back to reference Alonso P, Noor AM. The global fight against malaria is at crossroads. Lancet. 2017;390(10112):2532–4.CrossRef Alonso P, Noor AM. The global fight against malaria is at crossroads. Lancet. 2017;390(10112):2532–4.CrossRef
3.
go back to reference World Health Organization. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015. World Health Organization. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015.
4.
go back to reference Russell TL, Beebe NW, Bugoro H, Apairamo A, Chow WK, Cooper RD, et al. Frequent blood feeding enables insecticide-treated nets to reduce transmission by mosquitoes that bite predominately outdoors. Malar J. 2016;15:156.CrossRef Russell TL, Beebe NW, Bugoro H, Apairamo A, Chow WK, Cooper RD, et al. Frequent blood feeding enables insecticide-treated nets to reduce transmission by mosquitoes that bite predominately outdoors. Malar J. 2016;15:156.CrossRef
5.
go back to reference Killeen GF, Govella NJ, Lwetoijera DW, Okumu FO. Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses. Malar J. 2016;15:225.CrossRef Killeen GF, Govella NJ, Lwetoijera DW, Okumu FO. Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses. Malar J. 2016;15:225.CrossRef
6.
go back to reference Huijben S, Paaijmans KP. Putting evolution in elimination: winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl. 2018;11(4):415–30.CrossRef Huijben S, Paaijmans KP. Putting evolution in elimination: winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl. 2018;11(4):415–30.CrossRef
7.
go back to reference Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev. 2013;8:CD008923. Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev. 2013;8:CD008923.
8.
go back to reference Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS, et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 2010;7:e1000303.CrossRef Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS, et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 2010;7:e1000303.CrossRef
9.
go back to reference Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013;12:56.CrossRef Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013;12:56.CrossRef
10.
go back to reference Lyimo E, Takken W, Koella JC. Effect of rearing temperature and larval density on larval survival, age at pupation and adult body size of Anopheles gambiae. Entomol Exp Appl. 1992;63:265–71.CrossRef Lyimo E, Takken W, Koella JC. Effect of rearing temperature and larval density on larval survival, age at pupation and adult body size of Anopheles gambiae. Entomol Exp Appl. 1992;63:265–71.CrossRef
11.
go back to reference Charlwood JD, Smith T, Kihonda J, Heiz B, Billingsley PF, Takken W. Density independent feeding success of malaria vectors (Diptera: Culicidae) in Tanzania. Bull Entomol Res. 1995;85:29–35.CrossRef Charlwood JD, Smith T, Kihonda J, Heiz B, Billingsley PF, Takken W. Density independent feeding success of malaria vectors (Diptera: Culicidae) in Tanzania. Bull Entomol Res. 1995;85:29–35.CrossRef
12.
go back to reference Churcher T, Dawes E, Sinden R, Christophides G, Koella J, Basanez M-G. Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions. Malar J. 2010;9:311.CrossRef Churcher T, Dawes E, Sinden R, Christophides G, Koella J, Basanez M-G. Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions. Malar J. 2010;9:311.CrossRef
13.
go back to reference Russell TL, Lwetoijera DW, Knols BGJ, Takken W, Killeen GF, Ferguson HM. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors. Proc R Soc B. 2011;278:3142–51.CrossRef Russell TL, Lwetoijera DW, Knols BGJ, Takken W, Killeen GF, Ferguson HM. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors. Proc R Soc B. 2011;278:3142–51.CrossRef
14.
go back to reference White M, Griffin J, Churcher T, Ferguson N, Basanez M-G, Ghani A. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011;4:153.CrossRef White M, Griffin J, Churcher T, Ferguson N, Basanez M-G, Ghani A. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011;4:153.CrossRef
15.
go back to reference Moller-Jacobs L, Murdock C, Thomas M. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasit Vectors. 2014;7:593.CrossRef Moller-Jacobs L, Murdock C, Thomas M. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasit Vectors. 2014;7:593.CrossRef
16.
go back to reference Lyimo EO, Takken W. Effects of adult body size on fecundity and the pre-gravid rate of Anopheles gambiae females in Tanzania. Med Vet Entomol. 1993;7:328–32.CrossRef Lyimo EO, Takken W. Effects of adult body size on fecundity and the pre-gravid rate of Anopheles gambiae females in Tanzania. Med Vet Entomol. 1993;7:328–32.CrossRef
17.
go back to reference Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol. 1990;27:839–50.CrossRef Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol. 1990;27:839–50.CrossRef
18.
go back to reference Armbruster P, Hutchinson RA. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J Med Entomol. 2002;39:699–704.CrossRef Armbruster P, Hutchinson RA. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J Med Entomol. 2002;39:699–704.CrossRef
19.
go back to reference Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol. 2002;39:162–72.CrossRef Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol. 2002;39:162–72.CrossRef
20.
go back to reference Blackmore MS, Lord CC. The relationship between size and fecundity in Aedes albopictus. J Vector Ecol. 2000;25(2):212–7.PubMed Blackmore MS, Lord CC. The relationship between size and fecundity in Aedes albopictus. J Vector Ecol. 2000;25(2):212–7.PubMed
21.
go back to reference Ameneshewa B, Service MW. The relationship between female body size and survival rate of the malaria vector Anopheles arabiensis in Ethiopia. Med Vet Entomol. 1996;10:170–2.CrossRef Ameneshewa B, Service MW. The relationship between female body size and survival rate of the malaria vector Anopheles arabiensis in Ethiopia. Med Vet Entomol. 1996;10:170–2.CrossRef
22.
go back to reference Saul A. Estimation of survival rates and population size from mark-recapture experiments of bait-caught haematophagous insects. Bull Entomol Res. 1987;77:589–602.CrossRef Saul A. Estimation of survival rates and population size from mark-recapture experiments of bait-caught haematophagous insects. Bull Entomol Res. 1987;77:589–602.CrossRef
23.
go back to reference Landry S, DeFoliart G, Hogg D. Adult body size and survivorship in a field population of Aedes triseriatus. J Am Mosq Control Assoc. 1988;4:121–8.PubMed Landry S, DeFoliart G, Hogg D. Adult body size and survivorship in a field population of Aedes triseriatus. J Am Mosq Control Assoc. 1988;4:121–8.PubMed
24.
go back to reference Lyimo EO, Koella JC. Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite Plasmodium falciparum. Parasitology. 1992;104:233–7.CrossRef Lyimo EO, Koella JC. Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite Plasmodium falciparum. Parasitology. 1992;104:233–7.CrossRef
25.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2018. WHO. World malaria report. Geneva: World Health Organization; 2018.
26.
go back to reference Cooper RD, Frances SP. Malaria vectors on Buka and Bougainville islands, Papua New Guinea. J Am Mosq Control Assoc. 2002;18:100–6.PubMed Cooper RD, Frances SP. Malaria vectors on Buka and Bougainville islands, Papua New Guinea. J Am Mosq Control Assoc. 2002;18:100–6.PubMed
27.
go back to reference Russell TL, Burkot TR, Bugoro H, Apairamo A, Beebe NW, Chow WK, et al. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands. Malar J. 2016;15:164.CrossRef Russell TL, Burkot TR, Bugoro H, Apairamo A, Beebe NW, Chow WK, et al. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands. Malar J. 2016;15:164.CrossRef
28.
go back to reference Dietz K. Density-dependence in parasite transmission dynamics. Parasitol Today. 1988;4:91–7.CrossRef Dietz K. Density-dependence in parasite transmission dynamics. Parasitol Today. 1988;4:91–7.CrossRef
29.
go back to reference Burkot TR, Bugoro H, Apairamo A, Cooper RD, Echeverry DF, Odabasi D, et al. Spatial–temporal heterogeneity in malaria receptivity is best estimated by vector biting rates in areas nearing elimination. Parasit Vectors. 2018;11:606.CrossRef Burkot TR, Bugoro H, Apairamo A, Cooper RD, Echeverry DF, Odabasi D, et al. Spatial–temporal heterogeneity in malaria receptivity is best estimated by vector biting rates in areas nearing elimination. Parasit Vectors. 2018;11:606.CrossRef
30.
go back to reference Waltmann A, Darcy AW, Harris I, Koepfli C, Lodo J, Vahi V, et al. High rates of asymptomatic, sub-microscopic Plasmodium vivax infection and disappearing Plasmodium falciparum malaria in an area of low transmission in Solomon Islands. PLoS Negl Trop Dis. 2015;9:e0003758.CrossRef Waltmann A, Darcy AW, Harris I, Koepfli C, Lodo J, Vahi V, et al. High rates of asymptomatic, sub-microscopic Plasmodium vivax infection and disappearing Plasmodium falciparum malaria in an area of low transmission in Solomon Islands. PLoS Negl Trop Dis. 2015;9:e0003758.CrossRef
31.
go back to reference Belkin JN. The mosquitoes of the South Pacific (Diptera, Culicidae). Berkeley: University of California Press; 1962. Belkin JN. The mosquitoes of the South Pacific (Diptera, Culicidae). Berkeley: University of California Press; 1962.
32.
go back to reference Beebe NW, Saul A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am J Trop Med Hyg. 1995;53:478–81.CrossRef Beebe NW, Saul A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am J Trop Med Hyg. 1995;53:478–81.CrossRef
33.
34.
go back to reference Brady OJ, Godfray HCJ, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110:107–17.CrossRef Brady OJ, Godfray HCJ, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110:107–17.CrossRef
35.
go back to reference Cohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on Anopheles: what makes a malaria vector? Trends Parasitol. 2010;26:130–6.CrossRef Cohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on Anopheles: what makes a malaria vector? Trends Parasitol. 2010;26:130–6.CrossRef
37.
go back to reference Brook BW, Bradshaw CJA. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology. 2006;87:1445–51.CrossRef Brook BW, Bradshaw CJA. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology. 2006;87:1445–51.CrossRef
38.
go back to reference Yang G-J, Brook BW, Whelan PI, Cleland S, Bradshaw CJA. Endogenous and exogenous factors controlling temporal abundance patterns of tropical mosquitoes. Ecol Appl. 2008;18:2028–40.CrossRef Yang G-J, Brook BW, Whelan PI, Cleland S, Bradshaw CJA. Endogenous and exogenous factors controlling temporal abundance patterns of tropical mosquitoes. Ecol Appl. 2008;18:2028–40.CrossRef
39.
go back to reference Bugoro H, Hii J, Russell T, Cooper R, Chan B, Iro’ofa C, et al. Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in Northern Guadalcanal, Solomon Islands. Malar J. 2011;10:262.CrossRef Bugoro H, Hii J, Russell T, Cooper R, Chan B, Iro’ofa C, et al. Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in Northern Guadalcanal, Solomon Islands. Malar J. 2011;10:262.CrossRef
40.
go back to reference Smith J, Tahani L, Bobogare A, Bugoro H, Otto F, Fafale G, et al. Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands. Malar J. 2017;16:472.CrossRef Smith J, Tahani L, Bobogare A, Bugoro H, Otto F, Fafale G, et al. Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands. Malar J. 2017;16:472.CrossRef
41.
go back to reference Abiodun GJ, Maharaj R, Witbooi P, Okosun KO. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar J. 2016;15:364.CrossRef Abiodun GJ, Maharaj R, Witbooi P, Okosun KO. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar J. 2016;15:364.CrossRef
Metadata
Title
Smallest Anopheles farauti occur during the peak transmission season in the Solomon Islands
Authors
Kimberley McLaughlin
Tanya L. Russell
Allan Apairamo
Hugo Bugoro
Jance Oscar
Robert D. Cooper
Nigel W. Beebe
Scott A. Ritchie
Thomas R. Burkot
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2847-2

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue