Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands

Authors: Jason Smith, Lloyd Tahani, Albino Bobogare, Hugo Bugoro, Francis Otto, George Fafale, David Hiriasa, Adna Kazazic, Grant Beard, Amanda Amjadali, Isabelle Jeanne

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission.

Methods

Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann–Whitney U test.

Results

Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R2 skill scores. A highly significant negative correlation (R = − 0.86, R2 = 0.74, p < 0.05, n = 14) was found between October and December rainfall at Honiara and CMT in northern Guadalcanal for the subsequent January–June. This indicates that drier October–December periods are followed by higher malaria transmission periods in January–June. Cross-validation emphasized the suitability of this relationship for forecasting purposes \({\text{R}}^{2}{_{\text{LOOCV}}} = 0. 6 3\)  as did Mann–Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria transmission, respectively.

Conclusion

This study demonstrated that rainfall provides the best predictor of malaria transmission in North Guadalcanal. This relationship is thought to be underpinned by the unique hydrological conditions in northern Guadalcanal which allow sandbars to form across the mouths of estuaries which act to develop or increase stagnant brackish marshes in low rainfall periods. These are ideal habitats for the main mosquito vector, Anopheles farauti. High rainfall accumulations result in the flushing of these habitats, reducing their viability. The results of this study are now being used as the basis of a malaria early warning system which has been jointly implemented by the SIMS, NVBDCP and the Australian Bureau of Meteorology.
Appendix
Available only for authorised users
Literature
3.
go back to reference Feachem RG, Phillips AA, Targett GAT, Malaria Elimination Group, University of California, San Francisco. Shrinking the malaria map: a prospectus on malaria elimination. 1st ed. San Francisco: Global Health Group, UCSF Global Health Sciences; 2009. Feachem RG, Phillips AA, Targett GAT, Malaria Elimination Group, University of California, San Francisco. Shrinking the malaria map: a prospectus on malaria elimination. 1st ed. San Francisco: Global Health Group, UCSF Global Health Sciences; 2009.
4.
go back to reference Feachem RG, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, et al. Shrinking the malaria map: progress and prospects. Lancet. 2010;376:1566–78.CrossRefPubMedPubMedCentral Feachem RG, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, et al. Shrinking the malaria map: progress and prospects. Lancet. 2010;376:1566–78.CrossRefPubMedPubMedCentral
5.
go back to reference Over M, Bakote’e B, Velayudhan R, Wilikai P, Graves PM. Impregnated nets or DDT residual spraying? Field effectiveness of malaria prevention techniques in Solomon Islands, 1993–1999. Am J Trop Med Hyg. 2004;71:214–23.PubMed Over M, Bakote’e B, Velayudhan R, Wilikai P, Graves PM. Impregnated nets or DDT residual spraying? Field effectiveness of malaria prevention techniques in Solomon Islands, 1993–1999. Am J Trop Med Hyg. 2004;71:214–23.PubMed
6.
go back to reference Solomon Islands vector borne disease programme. Solomon Islands national strategic vision 2007–2012. Honiara, Solomon Islands; 2007. Solomon Islands vector borne disease programme. Solomon Islands national strategic vision 2007–2012. Honiara, Solomon Islands; 2007.
9.
go back to reference WHO, Global Malaria Programme. World Malaria Report 2014. Geneva: World Health Organization; 2014. WHO, Global Malaria Programme. World Malaria Report 2014. Geneva: World Health Organization; 2014.
10.
11.
go back to reference Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2010;118:620–6.CrossRefPubMed Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2010;118:620–6.CrossRefPubMed
12.
go back to reference Edlund S, Davis M, Douglas J, Kershenbaum A, Waraporn N, Lessler J, et al. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence. Malar J. 2012;11:331.CrossRefPubMedPubMedCentral Edlund S, Davis M, Douglas J, Kershenbaum A, Waraporn N, Lessler J, et al. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence. Malar J. 2012;11:331.CrossRefPubMedPubMedCentral
13.
go back to reference Briet O, Vounatsou P, Gunawardena D, Galappaththy G, Amerasinghe P. Temporal correlation between malaria and rainfall in Sri Lanka. Malar J. 2008;7:77.CrossRefPubMedPubMedCentral Briet O, Vounatsou P, Gunawardena D, Galappaththy G, Amerasinghe P. Temporal correlation between malaria and rainfall in Sri Lanka. Malar J. 2008;7:77.CrossRefPubMedPubMedCentral
14.
go back to reference Mantilla G, Oliveros H, Barnston A. The role of ENSO in understanding changes in Colombia’s annual malaria burden by region, 1960–2006. Malar J. 2009;8:6.CrossRefPubMedPubMedCentral Mantilla G, Oliveros H, Barnston A. The role of ENSO in understanding changes in Colombia’s annual malaria burden by region, 1960–2006. Malar J. 2009;8:6.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Hanf M, Adenis A, Nacher M, Carme B. The role of El Niño southern oscillation (ENSO) on variations of monthly Plasmodium falciparum malaria cases at the cayenne general hospital, 1996–2009, French Guiana. Malar J. 2011;10:100.CrossRefPubMedPubMedCentral Hanf M, Adenis A, Nacher M, Carme B. The role of El Niño southern oscillation (ENSO) on variations of monthly Plasmodium falciparum malaria cases at the cayenne general hospital, 1996–2009, French Guiana. Malar J. 2011;10:100.CrossRefPubMedPubMedCentral
17.
go back to reference Bangs MJ, Subianto DB. El Niño and associated outbreaks of severe malaria in highland populations in Irian Jaya, Indonesia: a review and epidemiological perspective. Southeast Asian J Trop Med Public Health. 1999;30:608–19.PubMed Bangs MJ, Subianto DB. El Niño and associated outbreaks of severe malaria in highland populations in Irian Jaya, Indonesia: a review and epidemiological perspective. Southeast Asian J Trop Med Public Health. 1999;30:608–19.PubMed
18.
go back to reference Bugoro H, Hii J, Russell T, Cooper R, Chan B, Iro’ofa C, et al. Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in northern Guadalcanal, Solomon Islands. Malar J. 2011;10:262.CrossRefPubMedPubMedCentral Bugoro H, Hii J, Russell T, Cooper R, Chan B, Iro’ofa C, et al. Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in northern Guadalcanal, Solomon Islands. Malar J. 2011;10:262.CrossRefPubMedPubMedCentral
19.
go back to reference Craig MH, Kleinschmidt I, Nawn JB, Le Sueur D, Sharp BL. Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: part I. The impact of climatic factors. Trop Med Int Health. 2004;9:1247–57.CrossRefPubMed Craig MH, Kleinschmidt I, Nawn JB, Le Sueur D, Sharp BL. Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: part I. The impact of climatic factors. Trop Med Int Health. 2004;9:1247–57.CrossRefPubMed
20.
go back to reference Thomson MC, Mason SJ, Phindela T, Connor SJ. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg. 2005;73:214–21.PubMed Thomson MC, Mason SJ, Phindela T, Connor SJ. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg. 2005;73:214–21.PubMed
21.
go back to reference Lowe R, Chirombo J, Tompkins AM. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J. 2013;12:416.CrossRefPubMedPubMedCentral Lowe R, Chirombo J, Tompkins AM. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J. 2013;12:416.CrossRefPubMedPubMedCentral
22.
go back to reference Krefis AC, Schwarz NG, Krüger A, Fobil J, Nkrumah B, Acquah S, et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am J Trop Med Hyg. 2011;84:285–91.CrossRefPubMedPubMedCentral Krefis AC, Schwarz NG, Krüger A, Fobil J, Nkrumah B, Acquah S, et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am J Trop Med Hyg. 2011;84:285–91.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA. 2004;101:2375–80.CrossRefPubMedPubMedCentral Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA. 2004;101:2375–80.CrossRefPubMedPubMedCentral
25.
go back to reference Grover-Kopec E, Kawano M, Klaver RW, Blumenthal B, Ceccato P, Connor SJ. An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa. Malar J. 2005;4:6.CrossRefPubMedPubMedCentral Grover-Kopec E, Kawano M, Klaver RW, Blumenthal B, Ceccato P, Connor SJ. An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa. Malar J. 2005;4:6.CrossRefPubMedPubMedCentral
26.
go back to reference Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature. 2006;439:576–9.CrossRefPubMed Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature. 2006;439:576–9.CrossRefPubMed
27.
go back to reference Bouma MJ, Poveda G, Rojas W, Chavasse D, Quinones M, Cox J, et al. Predicting high-risk years for malaria in Colombia using parameters of El Niño southern oscillation. Trop Med Int Health. 1997;2:1122–7.CrossRefPubMed Bouma MJ, Poveda G, Rojas W, Chavasse D, Quinones M, Cox J, et al. Predicting high-risk years for malaria in Colombia using parameters of El Niño southern oscillation. Trop Med Int Health. 1997;2:1122–7.CrossRefPubMed
28.
go back to reference Ruiz D, Poveda G, Velez I, Quinones M, Rua G, Velasquez L, et al. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a national malaria early warning system. Malar J. 2006;5:66.CrossRefPubMedPubMedCentral Ruiz D, Poveda G, Velez I, Quinones M, Rua G, Velasquez L, et al. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a national malaria early warning system. Malar J. 2006;5:66.CrossRefPubMedPubMedCentral
29.
go back to reference Bouma MJ, Kaay HJ. The EI Niño southern oscillation and the historic malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system for future epidemics? Trop Med Int Health. 1996;1:86–96.CrossRefPubMed Bouma MJ, Kaay HJ. The EI Niño southern oscillation and the historic malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system for future epidemics? Trop Med Int Health. 1996;1:86–96.CrossRefPubMed
30.
go back to reference Bugoro H, Hii J, Butafa C, Iro’ofa C, Apairamo A, Cooper R, et al. The bionomics of the malaria vector Anopheles farauti in northern Guadalcanal, Solomon Islands: issues for successful vector control. Malar J. 2014;13:56.CrossRefPubMedPubMedCentral Bugoro H, Hii J, Butafa C, Iro’ofa C, Apairamo A, Cooper R, et al. The bionomics of the malaria vector Anopheles farauti in northern Guadalcanal, Solomon Islands: issues for successful vector control. Malar J. 2014;13:56.CrossRefPubMedPubMedCentral
31.
go back to reference Bugoro H, Cooper R, Butafa C, Iro’ofa C, Mackenzie D, Chen CC, et al. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination. Malar J. 2011;10:133.CrossRefPubMedPubMedCentral Bugoro H, Cooper R, Butafa C, Iro’ofa C, Mackenzie D, Chen CC, et al. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination. Malar J. 2011;10:133.CrossRefPubMedPubMedCentral
32.
go back to reference Bugoro H, Iro’ofa C, Mackenzie DO, Apairamo A, Hevalao W, Corcoran S, et al. Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands. Malar J. 2011;10:287.CrossRefPubMedPubMedCentral Bugoro H, Iro’ofa C, Mackenzie DO, Apairamo A, Hevalao W, Corcoran S, et al. Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands. Malar J. 2011;10:287.CrossRefPubMedPubMedCentral
39.
go back to reference (Australia) PCCSP. Climate change in the Pacific: scientific assessment and new research. Aspendale: Pacific Climate Change Science Program; 2011. (Australia) PCCSP. Climate change in the Pacific: scientific assessment and new research. Aspendale: Pacific Climate Change Science Program; 2011.
41.
go back to reference Abawi Y, Llanso P, Harrison M, Mason SJ. Water, health and early warnings. Seasonal climate forecasting and managing risk. NATO Science Series; Dordrecht: Springer Netherlands; 2008. p. 351–95. Abawi Y, Llanso P, Harrison M, Mason SJ. Water, health and early warnings. Seasonal climate forecasting and managing risk. NATO Science Series; Dordrecht: Springer Netherlands; 2008. p. 351–95.
42.
go back to reference Cottrill A, Charles A, Shelton K, Jones DA, Kuleshov Y, Day KA, et al. Seasonal forecast verification in the Pacific using a coupled model POAMA and the statistical model SCOPIC. Melbourne: National Climate Centre; 2014. Cottrill A, Charles A, Shelton K, Jones DA, Kuleshov Y, Day KA, et al. Seasonal forecast verification in the Pacific using a coupled model POAMA and the statistical model SCOPIC. Melbourne: National Climate Centre; 2014.
43.
go back to reference Efron B. Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika. 1981;68:589–99.CrossRef Efron B. Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika. 1981;68:589–99.CrossRef
49.
go back to reference Grubbs FE. Sample criteria for testing outlying observations. Ann Math Stat. 1950;21:27–58.CrossRef Grubbs FE. Sample criteria for testing outlying observations. Ann Math Stat. 1950;21:27–58.CrossRef
50.
go back to reference Cook RD. Detection of influential observation in linear regression. Technometrics. 1977;19:15. Cook RD. Detection of influential observation in linear regression. Technometrics. 1977;19:15.
51.
go back to reference Fay MP, Proschan MA. Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 2010;4:1–39.CrossRefPubMedPubMedCentral Fay MP, Proschan MA. Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 2010;4:1–39.CrossRefPubMedPubMedCentral
52.
go back to reference Daggy RH. The Biology and Seasonal Cycle of Anopheles farauti on Espiritu Santo,New Hebrides. Ann Entomol Soc Am. 1945;38:1–13.CrossRef Daggy RH. The Biology and Seasonal Cycle of Anopheles farauti on Espiritu Santo,New Hebrides. Ann Entomol Soc Am. 1945;38:1–13.CrossRef
53.
go back to reference Russell TL, Burkot TR, Bugoro H, Apairamo A, Beebe NW, Chow WK, et al. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands. Malar J. 2016;15:164.CrossRefPubMedPubMedCentral Russell TL, Burkot TR, Bugoro H, Apairamo A, Beebe NW, Chow WK, et al. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands. Malar J. 2016;15:164.CrossRefPubMedPubMedCentral
Metadata
Title
Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands
Authors
Jason Smith
Lloyd Tahani
Albino Bobogare
Hugo Bugoro
Francis Otto
George Fafale
David Hiriasa
Adna Kazazic
Grant Beard
Amanda Amjadali
Isabelle Jeanne
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2120-5

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue