Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis

Authors: Gbenga J. Abiodun, Rajendra Maharaj, Peter Witbooi, Kazeem O. Okosun

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Malaria continues to be one of the most devastating diseases in the world, killing more humans than any other infectious disease. Malaria parasites are entirely dependent on Anopheles mosquitoes for transmission. For this reason, vector population dynamics is a crucial determinant of malaria risk. Consequently, it is important to understand the biology of malaria vector mosquitoes in the study of malaria transmission. Temperature and precipitation also play a significant role in both aquatic and adult stages of the Anopheles.

Methods

In this study, a climate-based, ordinary-differential-equation model is developed to analyse how temperature and the availability of water affect mosquito population size. In the model, the influence of ambient temperature on the development and the mortality rate of Anopheles arabiensis is considered over a region in KwaZulu-Natal Province, South Africa. In particular, the model is used to examine the impact of climatic factors on the gonotrophic cycle and the dynamics of mosquito population over the study region.

Results

The results fairly accurately quantify the seasonality of the population of An. arabiensis over the region and also demonstrate the influence of climatic factors on the vector population dynamics. The model simulates the population dynamics of both immature and adult An. arabiensis. The simulated larval density produces a curve which is similar to observed data obtained from another study.

Conclusion

The model is efficiently developed to predict An. arabiensis population dynamics, and to assess the efficiency of various control strategies. In addition, the model framework is built to accommodate human population dynamics with the ability to predict malaria incidence in future.
Appendix
Available only for authorised users
Literature
2.
go back to reference Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc R Soc B Biol Sci. 2011;278:1661–9.CrossRef Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc R Soc B Biol Sci. 2011;278:1661–9.CrossRef
3.
go back to reference Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjornstad ON. Effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE. 2013;14(8):e79276.CrossRef Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjornstad ON. Effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE. 2013;14(8):e79276.CrossRef
4.
go back to reference Chitnis N, Smith T, Steketee R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. J Biol Dyn. 2008;2:259–85.CrossRefPubMed Chitnis N, Smith T, Steketee R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. J Biol Dyn. 2008;2:259–85.CrossRefPubMed
5.
go back to reference Craig MH, Snow RW, le Sueur D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.CrossRefPubMed Craig MH, Snow RW, le Sueur D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.CrossRefPubMed
6.
go back to reference Makinde OD, Okosun KO. Impact of chemo-therapy on optimal control of malaria disease with infected immigrants. BioSystems. 2011;104:32–41.CrossRefPubMed Makinde OD, Okosun KO. Impact of chemo-therapy on optimal control of malaria disease with infected immigrants. BioSystems. 2011;104:32–41.CrossRefPubMed
7.
go back to reference Tompkins AM, Ermert V. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar J. 2013;12:65.CrossRefPubMedPubMedCentral Tompkins AM, Ermert V. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar J. 2013;12:65.CrossRefPubMedPubMedCentral
8.
go back to reference Ermert V. Risk assessment with regard to the occurrence of malaria in Africa under the influence of observed and projected climate change. PhD thesis. Cologne: University of Cologne; 2010. Ermert V. Risk assessment with regard to the occurrence of malaria in Africa under the influence of observed and projected climate change. PhD thesis. Cologne: University of Cologne; 2010.
9.
go back to reference Levine RS, Peterson T, Benedict MQ. Distribution of members of Anopheles quadrimaculatus Say s.l. (Diptera: Culicidae) and implications for their roles in malaria transmission in the United States. J Med Entomol. 2004;41:4.CrossRef Levine RS, Peterson T, Benedict MQ. Distribution of members of Anopheles quadrimaculatus Say s.l. (Diptera: Culicidae) and implications for their roles in malaria transmission in the United States. J Med Entomol. 2004;41:4.CrossRef
10.
go back to reference Rastogi M, Pal NL, Sen AB. Effect of variation in temperature on development of Plasmodium berghei (NK 65 strain) in Anopheles stephensi. Folia Parasitol (Praha). 1987;34:289–97.PubMed Rastogi M, Pal NL, Sen AB. Effect of variation in temperature on development of Plasmodium berghei (NK 65 strain) in Anopheles stephensi. Folia Parasitol (Praha). 1987;34:289–97.PubMed
11.
go back to reference Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107:15135–9.CrossRefPubMedPubMedCentral Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107:15135–9.CrossRefPubMedPubMedCentral
12.
go back to reference Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. A dipole mode in the tropical Indian Ocean. Nature. 1999;401:360–3.PubMed Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. A dipole mode in the tropical Indian Ocean. Nature. 1999;401:360–3.PubMed
13.
go back to reference Ross R. Studies on malaria. London: John Murray; 1928. p. 196. Ross R. Studies on malaria. London: John Murray; 1928. p. 196.
14.
go back to reference Parham EP, Edwin M. Modelling climate change and malaria transmission. Adv Exp Med Biol. 2010;673:184–99.CrossRefPubMed Parham EP, Edwin M. Modelling climate change and malaria transmission. Adv Exp Med Biol. 2010;673:184–99.CrossRefPubMed
15.
go back to reference Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou GF, Githeko AK, et al. Spatial distribution of anopheline larval habitats in Western Kenyan highlands: Effects of land cover types and topography. Am J Trop Med Hyg. 2005;73:157–65.PubMed Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou GF, Githeko AK, et al. Spatial distribution of anopheline larval habitats in Western Kenyan highlands: Effects of land cover types and topography. Am J Trop Med Hyg. 2005;73:157–65.PubMed
16.
go back to reference Martens WJ, Niessen LW, Rotmans J, Jetten TH, McMichael AJ. Potential impact of global climate change on malaria risk. Environ Health Perspect. 1995;103:458–64.CrossRefPubMedPubMedCentral Martens WJ, Niessen LW, Rotmans J, Jetten TH, McMichael AJ. Potential impact of global climate change on malaria risk. Environ Health Perspect. 1995;103:458–64.CrossRefPubMedPubMedCentral
17.
go back to reference Lindsay SW, Martens WJ. Malaria in the African highlands, past, present and future. Bull World Health Organ. 1998;76:33–45.PubMedPubMedCentral Lindsay SW, Martens WJ. Malaria in the African highlands, past, present and future. Bull World Health Organ. 1998;76:33–45.PubMedPubMedCentral
19.
go back to reference Maharaj R. Life table characteristics of Anopheles arabiensis (Diptera: Culicidae) under simulated seasonal conditions. J Med Entomol. 2003;40:737–42.CrossRefPubMed Maharaj R. Life table characteristics of Anopheles arabiensis (Diptera: Culicidae) under simulated seasonal conditions. J Med Entomol. 2003;40:737–42.CrossRefPubMed
20.
go back to reference Omer SM, Cloudsley-Thompson JL. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ. 1970;42:319–30.PubMedPubMedCentral Omer SM, Cloudsley-Thompson JL. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ. 1970;42:319–30.PubMedPubMedCentral
21.
go back to reference le Sueur D, Sharp BL. The breeding requirements of three members of the Anopheles gambiae Giles complex (Diptera: Culicidae) in the endemic malaria area of Natal South Africa. Bull Entomol Res. 1999;78:549–60.CrossRef le Sueur D, Sharp BL. The breeding requirements of three members of the Anopheles gambiae Giles complex (Diptera: Culicidae) in the endemic malaria area of Natal South Africa. Bull Entomol Res. 1999;78:549–60.CrossRef
22.
go back to reference Reisen WK. Effect of temperature on curlex tarsalis (Diptera: Culicidae) from the Coachella and San Joaquin Valleys of California. J Med Entomol. 1995;32:636–45.CrossRefPubMed Reisen WK. Effect of temperature on curlex tarsalis (Diptera: Culicidae) from the Coachella and San Joaquin Valleys of California. J Med Entomol. 1995;32:636–45.CrossRefPubMed
23.
go back to reference Paskewitz S, Collins FH. Use of the polymerase chain reaction to identify mosquito species of the Anopheles gambiae complex. Med Vet Entomol. 1990;4:367–73.CrossRefPubMed Paskewitz S, Collins FH. Use of the polymerase chain reaction to identify mosquito species of the Anopheles gambiae complex. Med Vet Entomol. 1990;4:367–73.CrossRefPubMed
24.
go back to reference Sheffield J, Goteti G, Wood EF. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modelling. J Climate. 2006;19:3088–111.CrossRef Sheffield J, Goteti G, Wood EF. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modelling. J Climate. 2006;19:3088–111.CrossRef
25.
go back to reference Cailly P, Tran A, Balenghien T, L’Ambert G, Toty C, Ezanno P. Climate-driven abundance model to assess mosquito control strategies. Ecol Model. 2012;227:7–17.CrossRef Cailly P, Tran A, Balenghien T, L’Ambert G, Toty C, Ezanno P. Climate-driven abundance model to assess mosquito control strategies. Ecol Model. 2012;227:7–17.CrossRef
26.
go back to reference Jetten TH, Takken W. Anophelism without malaria in Europe. A review of the ecology and distribution of the Genus Anopheles in Europe. Wageningen: Wageningen Agricultural University Press; 1994. Jetten TH, Takken W. Anophelism without malaria in Europe. A review of the ecology and distribution of the Genus Anopheles in Europe. Wageningen: Wageningen Agricultural University Press; 1994.
27.
go back to reference Lutambi AM, Penny MA, Smith T, Chitnis N. Mathematical modelling of mosquito dispersal in a heterogeneous environment. Math Biosci. 2013;241:198–216.CrossRefPubMed Lutambi AM, Penny MA, Smith T, Chitnis N. Mathematical modelling of mosquito dispersal in a heterogeneous environment. Math Biosci. 2013;241:198–216.CrossRefPubMed
28.
go back to reference Tran A, L’Ambert G, Lacour G, Benoî G, Demarchi M, Cros M, et al. A rainfall- and temperature-driven abundance model for Aedes albopictus populations. Int J Environ Res Public Health. 2013;10:1698–719.CrossRefPubMedPubMedCentral Tran A, L’Ambert G, Lacour G, Benoî G, Demarchi M, Cros M, et al. A rainfall- and temperature-driven abundance model for Aedes albopictus populations. Int J Environ Res Public Health. 2013;10:1698–719.CrossRefPubMedPubMedCentral
29.
go back to reference Roiz D, Eritja R, Escosa R, Lucientes J, Marques E, Melero-Alcibar R, et al. A survey of mosquitoes breeding in used tyres in Spain for the detection of imported potential vector species. J Vector Ecol. 2007;32:10–5.CrossRefPubMed Roiz D, Eritja R, Escosa R, Lucientes J, Marques E, Melero-Alcibar R, et al. A survey of mosquitoes breeding in used tyres in Spain for the detection of imported potential vector species. J Vector Ecol. 2007;32:10–5.CrossRefPubMed
30.
go back to reference Medical entomology for students. Cambridge: Cambridge University Press; 2004. p. 130–50. Medical entomology for students. Cambridge: Cambridge University Press; 2004. p. 130–50.
31.
go back to reference Lunde TM, Korecha D, Loha E, Sorteberg A, Lindtjorn B. A dynamic model of some malaria-transmitting Anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. Malar J. 2013;12:28.CrossRefPubMedPubMedCentral Lunde TM, Korecha D, Loha E, Sorteberg A, Lindtjorn B. A dynamic model of some malaria-transmitting Anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. Malar J. 2013;12:28.CrossRefPubMedPubMedCentral
32.
go back to reference Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004;3:29.CrossRefPubMedPubMedCentral Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004;3:29.CrossRefPubMedPubMedCentral
33.
go back to reference Gimnig JE, Ombok M, Kamau L, Hawley WA. Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J Med Entomol. 2001;38:282–8.CrossRefPubMed Gimnig JE, Ombok M, Kamau L, Hawley WA. Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J Med Entomol. 2001;38:282–8.CrossRefPubMed
34.
go back to reference Ye Y, Hoshen M, Kyobutungi C, Louis VR, Sauerborn R. Local scale prediction of Plasmodium falciparum malaria transmission in an endemic region using temperature and rainfall. Glob Health Action. 2009; 2. Ye Y, Hoshen M, Kyobutungi C, Louis VR, Sauerborn R. Local scale prediction of Plasmodium falciparum malaria transmission in an endemic region using temperature and rainfall. Glob Health Action. 2009; 2.
35.
36.
go back to reference Hamon WR. Estimating potential evapotranspiration. J Hyd Div ASCE. 1961;87:107–20. Hamon WR. Estimating potential evapotranspiration. J Hyd Div ASCE. 1961;87:107–20.
37.
go back to reference Paaijmans KP, Heusinkveld BG, Jacobs AF. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool. Int J Biometeorol. 2008;52:797–803.CrossRefPubMed Paaijmans KP, Heusinkveld BG, Jacobs AF. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool. Int J Biometeorol. 2008;52:797–803.CrossRefPubMed
38.
go back to reference Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration. Guidelines for computing crop water requirements. Rome: Irr Drain UN-FAO; 1998. p. 56. Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration. Guidelines for computing crop water requirements. Rome: Irr Drain UN-FAO; 1998. p. 56.
39.
go back to reference Haith DA, Shoenaker LL. Generalized watershed loading functions for stream flow nutrients. Water Resources Bull. 1987;23:471–8.CrossRef Haith DA, Shoenaker LL. Generalized watershed loading functions for stream flow nutrients. Water Resources Bull. 1987;23:471–8.CrossRef
40.
go back to reference Lu JB, Sun G, McNulty SG, Amatya DM. Modeling actual evapotranspiration from forested watersheds across the southeastern United States. JAWRA. 2005;39:887–96. Lu JB, Sun G, McNulty SG, Amatya DM. Modeling actual evapotranspiration from forested watersheds across the southeastern United States. JAWRA. 2005;39:887–96.
41.
go back to reference Rao LY, Sun G, Ford CR, Vose JM. Modeling potential evapotranspiration of two forested watersheds in the Southern Appalachians. Trans ASABE. 2011;54:2067–78.CrossRef Rao LY, Sun G, Ford CR, Vose JM. Modeling potential evapotranspiration of two forested watersheds in the Southern Appalachians. Trans ASABE. 2011;54:2067–78.CrossRef
42.
go back to reference Paaijmans KP, Takken W, Githeko AK, Jacobs AFG. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int J Biometeorol. 2008;52:747–53.CrossRefPubMed Paaijmans KP, Takken W, Githeko AK, Jacobs AFG. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int J Biometeorol. 2008;52:747–53.CrossRefPubMed
43.
go back to reference Himeidan YE, Rayah E, El A. Role of some environmental factors on the breeding activity of Anopheles arabiensis in New Halfa town, eastern Sudan. East Mediterr Health J. 2008;14:252–9.PubMed Himeidan YE, Rayah E, El A. Role of some environmental factors on the breeding activity of Anopheles arabiensis in New Halfa town, eastern Sudan. East Mediterr Health J. 2008;14:252–9.PubMed
44.
go back to reference Yamana TK, Elthahir ER. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasit Vectors. 2013;6:235–44.CrossRefPubMedPubMedCentral Yamana TK, Elthahir ER. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasit Vectors. 2013;6:235–44.CrossRefPubMedPubMedCentral
45.
go back to reference Defries R, Bounoua L, Collatz G. Human modification of the landscape and surface climate in the next fifty years. Global Change Biol. 2002;8:438–58.CrossRef Defries R, Bounoua L, Collatz G. Human modification of the landscape and surface climate in the next fifty years. Global Change Biol. 2002;8:438–58.CrossRef
46.
go back to reference Haines A, Fuchs C. Potential impacts on health of atmospheric change. J Public Health Med. 1991;13:69–80.PubMed Haines A, Fuchs C. Potential impacts on health of atmospheric change. J Public Health Med. 1991;13:69–80.PubMed
47.
go back to reference Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78:1136–47.PubMedPubMedCentral Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78:1136–47.PubMedPubMedCentral
48.
go back to reference Ngarakana-Gwasira ET, Bhunu CP, Mashonjowa E. Assessing the impact of temperature on malaria transmission dynamics. Afrika Mathematika. 2013;25:1095–112.CrossRef Ngarakana-Gwasira ET, Bhunu CP, Mashonjowa E. Assessing the impact of temperature on malaria transmission dynamics. Afrika Mathematika. 2013;25:1095–112.CrossRef
49.
go back to reference Bomblies A, Duchemin JB, Eltahir EAB. Hydrology of malaria. Model development and application to a Sahelian village. Water Resour Res. 2008;44:1–26.CrossRef Bomblies A, Duchemin JB, Eltahir EAB. Hydrology of malaria. Model development and application to a Sahelian village. Water Resour Res. 2008;44:1–26.CrossRef
Metadata
Title
Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis
Authors
Gbenga J. Abiodun
Rajendra Maharaj
Peter Witbooi
Kazeem O. Okosun
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1411-6

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.