Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Plasmodium Falciparum | Research

Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies

Authors: Kristina Haeussler, Isabell Berneburg, Esther Jortzik, Julia Hahn, Mahsa Rahbari, Norma Schulz, Janina Preuss, Viktor A. Zapol’skii, Lars Bode, Anthony B. Pinkerton, Dieter E. Kaufmann, Stefan Rahlfs, Katja Becker

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites.

Methods

Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium.

Results

Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher KM values for the substrate and cofactor. Like the P. falciparum enzyme, PvG6PD is hardly affected by S-glutathionylation and moderately by S-nitrosation. Since there are several naturally occurring variants of PfGluPho, the impact of these mutations on the kinetic properties of the enzyme was analysed. Notably, in contrast to many human G6PD variants, the mutations resulted in only minor changes in enzyme activity. Moreover, nanomolar IC50 values of several compounds were determined on P. vivax G6PD (including ellagic acid, flavellagic acid, and coruleoellagic acid), inhibitors that had been previously characterized on PfGluPho. ML304, a recently developed PfGluPho inhibitor, was verified to also be active on PvG6PD. Using genetically encoded probes, ML304 was confirmed to disturb the cytosolic glutathione-dependent redox potential of P. falciparum blood stage parasites. Finally, a new series of novel small molecules with the potential to inhibit the falciparum and vivax enzymes were synthesized, resulting in two compounds with nanomolar activity.

Conclusion

The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites’ redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Cowman AF, Healer J, Marapana D, Marsh K. Malaria: biology and disease. Cell. 2016;167:610–24.CrossRef Cowman AF, Healer J, Marapana D, Marsh K. Malaria: biology and disease. Cell. 2016;167:610–24.CrossRef
4.
go back to reference Naing C, Whittaker MA, Nyunt Wai V, Mak JW. Is Plasmodium vivax malaria a severe malaria?: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2014;8:e3071.CrossRef Naing C, Whittaker MA, Nyunt Wai V, Mak JW. Is Plasmodium vivax malaria a severe malaria?: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2014;8:e3071.CrossRef
5.
go back to reference Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and treatment of Plasmodium vivax malaria. Am J Trop Med Hyg. 2016;95(Suppl 6):35–51.CrossRef Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and treatment of Plasmodium vivax malaria. Am J Trop Med Hyg. 2016;95(Suppl 6):35–51.CrossRef
6.
go back to reference Noulin F, Borlon C, Van Den Abbeele J, D’Alessandro U, Erhart A. 1912-2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol. 2013;29:286–94.CrossRef Noulin F, Borlon C, Van Den Abbeele J, D’Alessandro U, Erhart A. 1912-2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol. 2013;29:286–94.CrossRef
7.
go back to reference Jortzik E, Becker K. Thioredoxin and glutathione systems in Plasmodium falciparum. Int J Med Microbiol. 2012;302:187–94.CrossRef Jortzik E, Becker K. Thioredoxin and glutathione systems in Plasmodium falciparum. Int J Med Microbiol. 2012;302:187–94.CrossRef
8.
go back to reference Nepveu F, Turrini F. Targeting the redox metabolism of Plasmodium falciparum. Future Med Chem. 2013;16:1993–2006.CrossRef Nepveu F, Turrini F. Targeting the redox metabolism of Plasmodium falciparum. Future Med Chem. 2013;16:1993–2006.CrossRef
9.
go back to reference Müller S. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol. 2004;53:1291–305.CrossRef Müller S. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol. 2004;53:1291–305.CrossRef
10.
go back to reference Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol. 2004;34:163–89.CrossRef Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol. 2004;34:163–89.CrossRef
11.
go back to reference Ginsburg H, Ward SA, Bray PG. An integrated model of chloroquine action. Parasitol Today. 1999;15:357–60.CrossRef Ginsburg H, Ward SA, Bray PG. An integrated model of chloroquine action. Parasitol Today. 1999;15:357–60.CrossRef
12.
go back to reference O’Neill PM, Posner GH. A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem. 2004;47:2945–64.CrossRef O’Neill PM, Posner GH. A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem. 2004;47:2945–64.CrossRef
13.
go back to reference Clarke JL, Scopes DA, Sodeinde O, Mason PJ. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase. A novel bifunctional enzyme in malaria parasites. Eur J Biochem. 2001;268:2013–9.CrossRef Clarke JL, Scopes DA, Sodeinde O, Mason PJ. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase. A novel bifunctional enzyme in malaria parasites. Eur J Biochem. 2001;268:2013–9.CrossRef
14.
go back to reference Jortzik E, Mailu BM, Preuss J, Fischer M, Bode L, Rahlfs S, Becker K. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: a unique bifunctional enzyme from Plasmodium falciparum. Biochem J. 2011;436:641–50.CrossRef Jortzik E, Mailu BM, Preuss J, Fischer M, Bode L, Rahlfs S, Becker K. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: a unique bifunctional enzyme from Plasmodium falciparum. Biochem J. 2011;436:641–50.CrossRef
15.
go back to reference Allen SM, Lim EE, Jortzik E, Preuss J, Chua HH, MacRae JI, et al. Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target. FEBS J. 2015;282:3808–23.CrossRef Allen SM, Lim EE, Jortzik E, Preuss J, Chua HH, MacRae JI, et al. Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target. FEBS J. 2015;282:3808–23.CrossRef
16.
go back to reference Preuss J, Hedrick M, Sergienko E, Pinkerton A, Mangravita-Novo A, Smith L, et al. High-throughput screening for small-molecule inhibitors of Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase. J Biomol Screen. 2012;17:738–51.CrossRef Preuss J, Hedrick M, Sergienko E, Pinkerton A, Mangravita-Novo A, Smith L, et al. High-throughput screening for small-molecule inhibitors of Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase. J Biomol Screen. 2012;17:738–51.CrossRef
17.
go back to reference Preuss J, Maloney P, Peddibhotla S, Hedrick MP, Hershberger P, Gosalia P, et al. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase inhibitor (R, Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro. J Med Chem. 2012;55:7262–72.CrossRef Preuss J, Maloney P, Peddibhotla S, Hedrick MP, Hershberger P, Gosalia P, et al. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase inhibitor (R, Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro. J Med Chem. 2012;55:7262–72.CrossRef
18.
go back to reference Maloney P, Hedrick M, Peddibhotla S, Hershberger P, Milewski M, Gosalia P, et al. A 2nd selective inhibitor of Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PDH)—Probe 2. NIH Probe Report, 2010–2012, updated 2013. Maloney P, Hedrick M, Peddibhotla S, Hershberger P, Milewski M, Gosalia P, et al. A 2nd selective inhibitor of Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PDH)—Probe 2. NIH Probe Report, 2010–2012, updated 2013.
19.
go back to reference Hakimi H, Asada M, Angeles JM, Inoue N, Kawazu S. Cloning and characterization of Plasmodium vivax thioredoxin peroxidase-1. Parasitol Res. 2012;111:525–9.CrossRef Hakimi H, Asada M, Angeles JM, Inoue N, Kawazu S. Cloning and characterization of Plasmodium vivax thioredoxin peroxidase-1. Parasitol Res. 2012;111:525–9.CrossRef
20.
go back to reference Hakimi H, Asada M, Angeles JM, Kawai S, Inoue N, Kawazu S. Plasmodium vivax and Plasmodium knowlesi: cloning, expression and functional analysis of 1-Cys peroxiredoxin. Exp Parasitol. 2013;133:101–5.CrossRef Hakimi H, Asada M, Angeles JM, Kawai S, Inoue N, Kawazu S. Plasmodium vivax and Plasmodium knowlesi: cloning, expression and functional analysis of 1-Cys peroxiredoxin. Exp Parasitol. 2013;133:101–5.CrossRef
21.
go back to reference Na BK, Kang JM, Kim TS, Sohn WM. Plasmodium vivax: molecular cloning, expression and characterization of glutathione S-transferase. Exp Parasitol. 2007;116:414–8.CrossRef Na BK, Kang JM, Kim TS, Sohn WM. Plasmodium vivax: molecular cloning, expression and characterization of glutathione S-transferase. Exp Parasitol. 2007;116:414–8.CrossRef
22.
go back to reference Mohring F, Pretzel J, Jortzik E, Becker K. The redox systems of Plasmodium falciparum and Plasmodium vivax: comparison, in silico analyses and inhibitor studies. Cur Med Chem. 2014;21:1728–56.CrossRef Mohring F, Pretzel J, Jortzik E, Becker K. The redox systems of Plasmodium falciparum and Plasmodium vivax: comparison, in silico analyses and inhibitor studies. Cur Med Chem. 2014;21:1728–56.CrossRef
23.
go back to reference Lopez C, Saravia C, Gomez A, Hoebeke J, Patarroyo MA. Mechanisms of genetically-based resistance to malaria. Gene. 2010;467:1–12.CrossRef Lopez C, Saravia C, Gomez A, Hoebeke J, Patarroyo MA. Mechanisms of genetically-based resistance to malaria. Gene. 2010;467:1–12.CrossRef
24.
go back to reference Gomez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, Serrano-Posada H, Ortega-Cuellar D, Gonzalez-Valdez A, et al. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int J Mol Sci. 2016;17:2069.CrossRef Gomez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, Serrano-Posada H, Ortega-Cuellar D, Gonzalez-Valdez A, et al. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int J Mol Sci. 2016;17:2069.CrossRef
25.
go back to reference Arese P, Turrini F, Schwarzer E. Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem. 2005;16:133–46.CrossRef Arese P, Turrini F, Schwarzer E. Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem. 2005;16:133–46.CrossRef
26.
go back to reference Cappadoro M, Giribaldi G, O’Brien E, Turrini F, Mannu F, Ulliers D, et al. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood. 1998;92:2527–34.PubMed Cappadoro M, Giribaldi G, O’Brien E, Turrini F, Mannu F, Ulliers D, et al. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood. 1998;92:2527–34.PubMed
27.
go back to reference Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI. G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol. 2013;81:133–201.CrossRef Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI. G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol. 2013;81:133–201.CrossRef
28.
go back to reference Volkman SK, Sabeti PC, DeCaprio D, Neafsey DE, Schaffner SF, Milner DA Jr, et al. A genome-wide map of diversity in Plasmodium falciparum. Nat Genet. 2007;39:113–9.CrossRef Volkman SK, Sabeti PC, DeCaprio D, Neafsey DE, Schaffner SF, Milner DA Jr, et al. A genome-wide map of diversity in Plasmodium falciparum. Nat Genet. 2007;39:113–9.CrossRef
29.
go back to reference Neafsey DE, Schaffner SF, Volkman SK, Park D, Montgomery P, Milner DA Jr, et al. Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biol. 2008;9:R171.CrossRef Neafsey DE, Schaffner SF, Volkman SK, Park D, Montgomery P, Milner DA Jr, et al. Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biol. 2008;9:R171.CrossRef
30.
go back to reference Kirchner S, Power BJ, Waters AP. Recent advances in malaria genomics and epigenomics. Genome Med. 2016;8:92.CrossRef Kirchner S, Power BJ, Waters AP. Recent advances in malaria genomics and epigenomics. Genome Med. 2016;8:92.CrossRef
31.
go back to reference Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018;16:156–70.CrossRef Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018;16:156–70.CrossRef
32.
go back to reference Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, Benoit-Vical F. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob Agents Chemother. 2009;53:1100–6.CrossRef Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, Benoit-Vical F. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob Agents Chemother. 2009;53:1100–6.CrossRef
33.
go back to reference Sturm N, Hu Y, Zimmermann H, Fritz-Wolf K, Wittlin S, Rahlfs S, Becker K. Compounds structurally related to ellagic acid show improved antiplasmodial activity. Antimicrob Agents Chemother. 2009;53:622–30.CrossRef Sturm N, Hu Y, Zimmermann H, Fritz-Wolf K, Wittlin S, Rahlfs S, Becker K. Compounds structurally related to ellagic acid show improved antiplasmodial activity. Antimicrob Agents Chemother. 2009;53:622–30.CrossRef
34.
go back to reference Hayeshi R, Mutingwende I, Mavengere W, Masiyanise V, Mukanganyama S. The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin. Food Chem Toxicol. 2007;45:286–95.CrossRef Hayeshi R, Mutingwende I, Mavengere W, Masiyanise V, Mukanganyama S. The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin. Food Chem Toxicol. 2007;45:286–95.CrossRef
35.
go back to reference Kasozi D, Mohring F, Rahlfs S, Meyer AJ, Becker K. Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum. PLoS Pathog. 2013;12:e1003782.CrossRef Kasozi D, Mohring F, Rahlfs S, Meyer AJ, Becker K. Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum. PLoS Pathog. 2013;12:e1003782.CrossRef
36.
go back to reference Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res. 2012;11:5323–37.CrossRef Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res. 2012;11:5323–37.CrossRef
37.
go back to reference Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, Dillman T, et al. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J Proteome Res. 2013;12:4028–45.CrossRef Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, Dillman T, et al. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J Proteome Res. 2013;12:4028–45.CrossRef
38.
go back to reference Treeck M, Sanders JL, Elias JE, Boothroyd JC. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe. 2011;10:410–9.CrossRef Treeck M, Sanders JL, Elias JE, Boothroyd JC. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe. 2011;10:410–9.CrossRef
39.
go back to reference Kim KY, Lee HW, Shim YM, Mook-Jung I, Jeon GS, Sung JJ. A phosphomimetic mutant TDP-43 (S409/410E) induces Drosha instability and cytotoxicity in Neuro 2A cells. Biochem Biophys Res Commun. 2015;464:236–43.CrossRef Kim KY, Lee HW, Shim YM, Mook-Jung I, Jeon GS, Sung JJ. A phosphomimetic mutant TDP-43 (S409/410E) induces Drosha instability and cytotoxicity in Neuro 2A cells. Biochem Biophys Res Commun. 2015;464:236–43.CrossRef
40.
go back to reference Kehr S, Jortzik E, Delahunty C, Yates JR 3rd, Rahlfs S, Becker K. Protein S-glutathionylation in malaria parasites. Antioxid Redox Signal. 2011;15:2855–65.CrossRef Kehr S, Jortzik E, Delahunty C, Yates JR 3rd, Rahlfs S, Becker K. Protein S-glutathionylation in malaria parasites. Antioxid Redox Signal. 2011;15:2855–65.CrossRef
41.
go back to reference Wang L, Delahunty C, Prieto JH, Rahlfs S, Jortzik E, Yates JR 3rd, Becker K. Protein S-nitrosylation in Plasmodium falciparum. Antioxid Redox Signal. 2014;20:2923–35.CrossRef Wang L, Delahunty C, Prieto JH, Rahlfs S, Jortzik E, Yates JR 3rd, Becker K. Protein S-nitrosylation in Plasmodium falciparum. Antioxid Redox Signal. 2014;20:2923–35.CrossRef
42.
go back to reference Haeussler K, Fritz-Wolf K, Reichmann M, Rahlfs S, Becker K. Characterization of Plasmodium falciparum 6-phosphogluconate dehydrogenase as an antimalarial drug target. J Mol Biol. 2018;430:4049–67.CrossRef Haeussler K, Fritz-Wolf K, Reichmann M, Rahlfs S, Becker K. Characterization of Plasmodium falciparum 6-phosphogluconate dehydrogenase as an antimalarial drug target. J Mol Biol. 2018;430:4049–67.CrossRef
43.
go back to reference Gorren AC, Schrammel A, Schmidt K, Mayer B. Decomposition of S-nitrosoglutathione in the presence of copper ions and glutathione. Arch Biochem Biophys. 1996;330:219–28.CrossRef Gorren AC, Schrammel A, Schmidt K, Mayer B. Decomposition of S-nitrosoglutathione in the presence of copper ions and glutathione. Arch Biochem Biophys. 1996;330:219–28.CrossRef
44.
go back to reference Zapol’skii VA, Fischer R, Namyslo JC, Kaufmann DE. Chemistry of polyhalogenated nitrobutadienes, 8: nitropolychlorobutadienes—precursors for insecticidal neonicotinoids. Bioorg Med Chem. 2009;17:4206–15.CrossRef Zapol’skii VA, Fischer R, Namyslo JC, Kaufmann DE. Chemistry of polyhalogenated nitrobutadienes, 8: nitropolychlorobutadienes—precursors for insecticidal neonicotinoids. Bioorg Med Chem. 2009;17:4206–15.CrossRef
45.
go back to reference Zapol’skii VA, Namyslo JC, Gjikaj M, Kaufmann DE. Chemistry of polyhalogenated nitrobutadienes, 4: reactions of mono-, bis-, and tris(4-tolylthio) derivatives of 2-nitroperchloro-1,3-butadiene with alpha,beta-bifunctional nucleophiles. Arkivoc. 2007;2007(i):76–93. Zapol’skii VA, Namyslo JC, Gjikaj M, Kaufmann DE. Chemistry of polyhalogenated nitrobutadienes, 4: reactions of mono-, bis-, and tris(4-tolylthio) derivatives of 2-nitroperchloro-1,3-butadiene with alpha,beta-bifunctional nucleophiles. Arkivoc. 2007;2007(i):76–93.
46.
go back to reference Zapol’skii VA, Namyslo JC, Adam AEW, Kaufmann DE. Chemistry of polyhalogenated nitrobutadienes, 1: a new synthesis of perfunctionalized 3-amino-4-nitrothiophenes. Heterocycles. 2004;63:1281–98.CrossRef Zapol’skii VA, Namyslo JC, Adam AEW, Kaufmann DE. Chemistry of polyhalogenated nitrobutadienes, 1: a new synthesis of perfunctionalized 3-amino-4-nitrothiophenes. Heterocycles. 2004;63:1281–98.CrossRef
47.
go back to reference Rahbari M, Rahlfs S, Jortzik E, Bogeski I, Becker K. H2O2 dynamics in the malaria parasite Plasmodium falciparum. PLoS ONE. 2017;12:e0174837.CrossRef Rahbari M, Rahlfs S, Jortzik E, Bogeski I, Becker K. H2O2 dynamics in the malaria parasite Plasmodium falciparum. PLoS ONE. 2017;12:e0174837.CrossRef
48.
go back to reference Rahbari M, Rahlfs S, Przyborski JM, Schuh AK, Hunt NH, Fidock DA, et al. Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Sci Rep. 2017;7:10449.CrossRef Rahbari M, Rahlfs S, Przyborski JM, Schuh AK, Hunt NH, Fidock DA, et al. Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Sci Rep. 2017;7:10449.CrossRef
49.
go back to reference Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.CrossRef Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.CrossRef
50.
go back to reference Paul F, Roath S, Melville D, Warhurst DC, Osisanya JO. Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet. 1981;8237:70–1.CrossRef Paul F, Roath S, Melville D, Warhurst DC, Osisanya JO. Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet. 1981;8237:70–1.CrossRef
51.
go back to reference Orjih AU. Saponin haemolysis for increasing concentration of Plasmodium falciparum infected erythrocytes. Lancet. 1994;343:295.CrossRef Orjih AU. Saponin haemolysis for increasing concentration of Plasmodium falciparum infected erythrocytes. Lancet. 1994;343:295.CrossRef
52.
go back to reference Schuh AK, Rahbari M, Mohring F, Stanislaw JJG, Heimsch KC, Weder S, et al. Stable integration and comparison of hGrx1-roGFP2 and sfroGFP2 redox probes in the malaria parasite Plasmodium falciparum. ACS Infect Dis. 2018;4:1601–12.CrossRef Schuh AK, Rahbari M, Mohring F, Stanislaw JJG, Heimsch KC, Weder S, et al. Stable integration and comparison of hGrx1-roGFP2 and sfroGFP2 redox probes in the malaria parasite Plasmodium falciparum. ACS Infect Dis. 2018;4:1601–12.CrossRef
53.
go back to reference Beutler E. Red cell metabolism: a manual of biochemical methods. 2nd ed. New York: Grune and Stratton; 1984. Beutler E. Red cell metabolism: a manual of biochemical methods. 2nd ed. New York: Grune and Stratton; 1984.
54.
go back to reference Broniowska KA, Diers AR, Hogg N. S-nitrosoglutathione. Biochim Biophys Acta. 1830;2013:3173–81. Broniowska KA, Diers AR, Hogg N. S-nitrosoglutathione. Biochim Biophys Acta. 1830;2013:3173–81.
55.
go back to reference Cornish-Bowden A. Fundamentals of enzyme kinetics. 4th ed. Hoboken: Wiley-Blackwell; 2012. Cornish-Bowden A. Fundamentals of enzyme kinetics. 4th ed. Hoboken: Wiley-Blackwell; 2012.
56.
go back to reference Siciliano G, Santha Kumar TR, Bona R, Camarda G, Calabretta MM, Cevenini L, et al. A high susceptibility to redox imbalance of the transmissible stages of Plasmodium falciparum revealed with a luciferase-based mature gametocyte assay. Mol Microbiol. 2017;104:306–18.CrossRef Siciliano G, Santha Kumar TR, Bona R, Camarda G, Calabretta MM, Cevenini L, et al. A high susceptibility to redox imbalance of the transmissible stages of Plasmodium falciparum revealed with a luciferase-based mature gametocyte assay. Mol Microbiol. 2017;104:306–18.CrossRef
57.
go back to reference Preuss J, Jortzik E, Becker K. Glucose-6-phosphate metabolism in Plasmodium falciparum. IUBMB Life. 2012;64:603–11.CrossRef Preuss J, Jortzik E, Becker K. Glucose-6-phosphate metabolism in Plasmodium falciparum. IUBMB Life. 2012;64:603–11.CrossRef
58.
go back to reference Ibrahim MA, Ghazy AH, Salem AM, Ghazy MA, Abdel-Monsef MM. Biochemical characterization of buffalo liver glucose-6-phosphate dehydrogenase isoforms. Protein J. 2015;34:193–204.CrossRef Ibrahim MA, Ghazy AH, Salem AM, Ghazy MA, Abdel-Monsef MM. Biochemical characterization of buffalo liver glucose-6-phosphate dehydrogenase isoforms. Protein J. 2015;34:193–204.CrossRef
59.
go back to reference Heise N, Opperdoes FR. Purification, localisation and characterisation of glucose-6-phosphate dehydrogenase of Trypanosoma brucei. Mol Biochem Parasitol. 1999;99:21–32.CrossRef Heise N, Opperdoes FR. Purification, localisation and characterisation of glucose-6-phosphate dehydrogenase of Trypanosoma brucei. Mol Biochem Parasitol. 1999;99:21–32.CrossRef
60.
go back to reference Cho SW, Joshi JG. Characterization of glucose-6-phosphate dehydrogenase isozymes from human and pig brain. Neuroscience. 1990;38:819–28.CrossRef Cho SW, Joshi JG. Characterization of glucose-6-phosphate dehydrogenase isozymes from human and pig brain. Neuroscience. 1990;38:819–28.CrossRef
61.
go back to reference Wrigley NG, Heather JV, Bonsignore A, De Flora A. Human erythrocyte glucose 6-phosphate dehydrogenase: electron microscope studies on structure and interconversion of tetramers, dimers and monomers. J Mol Biol. 1972;68:483–99.CrossRef Wrigley NG, Heather JV, Bonsignore A, De Flora A. Human erythrocyte glucose 6-phosphate dehydrogenase: electron microscope studies on structure and interconversion of tetramers, dimers and monomers. J Mol Biol. 1972;68:483–99.CrossRef
62.
go back to reference Jortzik E, Wang L, Becker K. Thiol-based posttranslational modifications in parasites. Antioxid Redox Signal. 2012;17:657–73.CrossRef Jortzik E, Wang L, Becker K. Thiol-based posttranslational modifications in parasites. Antioxid Redox Signal. 2012;17:657–73.CrossRef
63.
go back to reference Belcastro E, Gaucher C, Corti A, Leroy P, Lartaud I, Pompella A. Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biol Chem. 2017;398:1267–93.CrossRef Belcastro E, Gaucher C, Corti A, Leroy P, Lartaud I, Pompella A. Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biol Chem. 2017;398:1267–93.CrossRef
64.
go back to reference Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci. 2009;34:85–96.CrossRef Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci. 2009;34:85–96.CrossRef
65.
go back to reference Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem. 2012;287:4411–8.CrossRef Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem. 2012;287:4411–8.CrossRef
66.
go back to reference Clarke JL, Sodeinde O, Mason PJ. A unique insertion in Plasmodium berghei glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: evolutionary and functional studies. Mol Biochem Parasitol. 2003;127:1–8.CrossRef Clarke JL, Sodeinde O, Mason PJ. A unique insertion in Plasmodium berghei glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: evolutionary and functional studies. Mol Biochem Parasitol. 2003;127:1–8.CrossRef
67.
go back to reference Doerig C, Rayner JC, Scherf A, Tobin AB. Post-translational protein modifications in malaria parasites. Nat Rev Microbiol. 2015;13:160–72.CrossRef Doerig C, Rayner JC, Scherf A, Tobin AB. Post-translational protein modifications in malaria parasites. Nat Rev Microbiol. 2015;13:160–72.CrossRef
68.
go back to reference Njomnang Soh P, Witkowski B, Gales A, Huyghe E, Berry A, Pipy B, Benoit-Vical F. Implication of glutathione in the in vitro antiplasmodial mechanism of action of ellagic acid. PLoS ONE. 2012;9:e45906.CrossRef Njomnang Soh P, Witkowski B, Gales A, Huyghe E, Berry A, Pipy B, Benoit-Vical F. Implication of glutathione in the in vitro antiplasmodial mechanism of action of ellagic acid. PLoS ONE. 2012;9:e45906.CrossRef
69.
go back to reference Aretz J, Baukmann H, Shanina E, Hanske J, Wawrzinek R, Zapol’skii VA, et al. Identification of multiple druggable secondary sites by fragment screening against DC-SIGN. Angew Chem Int Ed. 2017;56:7292–6.CrossRef Aretz J, Baukmann H, Shanina E, Hanske J, Wawrzinek R, Zapol’skii VA, et al. Identification of multiple druggable secondary sites by fragment screening against DC-SIGN. Angew Chem Int Ed. 2017;56:7292–6.CrossRef
70.
go back to reference Bolger G, Roy S, Zapol’skii VA, Kaufmann DE, Schnürch M, Mihovilovic MD, et al. Targeting aphA: a new high-throughput screening assay identifies compounds that reduce prime virulence factors of Vibrio cholerae. J Med Microbiol. 2016;65:678–87.CrossRef Bolger G, Roy S, Zapol’skii VA, Kaufmann DE, Schnürch M, Mihovilovic MD, et al. Targeting aphA: a new high-throughput screening assay identifies compounds that reduce prime virulence factors of Vibrio cholerae. J Med Microbiol. 2016;65:678–87.CrossRef
71.
go back to reference Bürgi M, Zapol’skii VA, Hinkelmann B, Köster M, Kaufmann DE, Sasse F, et al. Screening and characterization of molecules that modulate the biological activity of IFNs-I. J Biotechnol. 2016;233:6–16.CrossRef Bürgi M, Zapol’skii VA, Hinkelmann B, Köster M, Kaufmann DE, Sasse F, et al. Screening and characterization of molecules that modulate the biological activity of IFNs-I. J Biotechnol. 2016;233:6–16.CrossRef
Metadata
Title
Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies
Authors
Kristina Haeussler
Isabell Berneburg
Esther Jortzik
Julia Hahn
Mahsa Rahbari
Norma Schulz
Janina Preuss
Viktor A. Zapol’skii
Lars Bode
Anthony B. Pinkerton
Dieter E. Kaufmann
Stefan Rahlfs
Katja Becker
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2651-z

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue