Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Housing gaps, mosquitoes and public viewpoints: a mixed methods assessment of relationships between house characteristics, malaria vector biting risk and community perspectives in rural Tanzania

Authors: Emmanuel W. Kaindoa, Marceline Finda, Jepchirchir Kiplagat, Gustav Mkandawile, Anna Nyoni, Maureen Coetzee, Fredros O. Okumu

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

House improvement and environmental management can significantly improve malaria transmission control in endemic communities. This study assessed the influence of physical characteristics of houses and surrounding environments on mosquito biting risk in rural Tanzanian villages, and examined knowledge and perceptions of residents on relationships between these factors and malaria transmission. The study further assessed whether people worried about these risks and how they coped.

Methods

Entomological surveys of indoor mosquito densities were conducted across four villages in Ulanga district, south-eastern Tanzania. The survey involved 48 sentinel houses sampled monthly and other sets of 48 houses randomly recruited each month for one-off sampling over 12 months. Physical characteristics of the houses and surrounding environments were recorded. Questionnaire surveys were administered to 200 household heads to assess their knowledge and concerns regarding the observed housing and environmental features, and whether they considered these features when constructing houses. Focus group discussions, were conducted to clarify emergent themes on people’s perceptions on relationships between housing or environmental factors and malaria transmission.

Results

The entomological surveys showed statistically higher indoor densities of the malaria vectors (Anopheles arabiensis and Anopheles funestus) in houses with mud walls compared to plastered or brick walls, open eaves compared to closed eaves and unscreened windows compared to screened windows. Most respondents reported that their houses allowed mosquito entry, at least partially. Participants were aware that house structure and environmental characteristics influenced indoor mosquito densities and consequently malaria transmission. They were concerned about living in poorly-constructed houses with gaps on eaves, walls, windows and doors but were constrained by low income.

Conclusion

In rural south-eastern Tanzania, significant proportions of people still live in houses with open eaves, unscreened windows and gaps on doors. Though they are fully aware of associated mosquito biting and pathogen transmission risks, they are constrained by low-income levels and competing household priorities. The study proposes that community-based house improvement initiatives combined with targeted subsidies could lower the financial barriers, improve access to essential construction materials or designs, and significantly accelerate malaria transmission control in these communities.
Literature
2.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentral Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentral
3.
go back to reference malERA Refresh Consultative Panel on Tools for Malaria. Elimination. malERA: an updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. PLoS Med. 2017;14:e1002455.CrossRef malERA Refresh Consultative Panel on Tools for Malaria. Elimination. malERA: an updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. PLoS Med. 2017;14:e1002455.CrossRef
4.
go back to reference malERA Refresh Consultative Panel on Characterising the Reservoir and Measuring Transmission. malERA: an updated research agenda for characterising the reservoir and measuring transmission in malaria elimination and eradication. PLoS Med. 2017;14:e1002452.CrossRef malERA Refresh Consultative Panel on Characterising the Reservoir and Measuring Transmission. malERA: an updated research agenda for characterising the reservoir and measuring transmission in malaria elimination and eradication. PLoS Med. 2017;14:e1002452.CrossRef
5.
go back to reference Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GEL, Emerson PM. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health. 2003;8:512–7.CrossRefPubMed Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GEL, Emerson PM. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health. 2003;8:512–7.CrossRefPubMed
7.
go back to reference Utzinger J, Tozan Y, Singer BH. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001;6:677–87.CrossRefPubMed Utzinger J, Tozan Y, Singer BH. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001;6:677–87.CrossRefPubMed
8.
go back to reference Mandike R. Tanzanian National Malaria Control Programme (NMCP) (2014) Strategy 2014–2020. Mandike R. Tanzanian National Malaria Control Programme (NMCP) (2014) Strategy 2014–2020.
10.
go back to reference Tanzania Commission for AIDS (TACAIDS). Tanzania-2011–12 HIV/AIDS and Malaria Indicator Survey 2011–12: Key Findings. Tanzania Comm AIDS (ZAC), Zanzibar AIDS Comm (NBS), Natl Bur Stat (OCGS), Off Chief Gov Stat ICF Int. 2013; 16. Tanzania Commission for AIDS (TACAIDS). Tanzania-2011–12 HIV/AIDS and Malaria Indicator Survey 2011–12: Key Findings. Tanzania Comm AIDS (ZAC), Zanzibar AIDS Comm (NBS), Natl Bur Stat (OCGS), Off Chief Gov Stat ICF Int. 2013; 16.
12.
go back to reference Kisinza WN, Nkya TE, Kabula B, Overgaard HJ, Massue DJ, Mageni Z, et al. Multiple insecticide resistance in Anopheles gambiae from Tanzania: a major concern for malaria vector control. Malar J. 2017;16:439.CrossRefPubMedPubMedCentral Kisinza WN, Nkya TE, Kabula B, Overgaard HJ, Massue DJ, Mageni Z, et al. Multiple insecticide resistance in Anopheles gambiae from Tanzania: a major concern for malaria vector control. Malar J. 2017;16:439.CrossRefPubMedPubMedCentral
13.
go back to reference Musoke D, Karani G, Ssempebwa JC, Etajak S, Guwatudde D, Musoke MB. Knowledge and practices on malaria prevention in two rural communities in Wakiso district, Uganda. Afr Health Sci. 2015;15:401–12.CrossRefPubMedPubMedCentral Musoke D, Karani G, Ssempebwa JC, Etajak S, Guwatudde D, Musoke MB. Knowledge and practices on malaria prevention in two rural communities in Wakiso district, Uganda. Afr Health Sci. 2015;15:401–12.CrossRefPubMedPubMedCentral
14.
go back to reference Tynan A, Atkinson J-A, Toaliu H, Taleo G, Fitzgerald L, Whittaker M, et al. Community participation for malaria elimination in Tafea Province, Vanuatu: part II. Social and cultural aspects of treatment-seeking behaviour. Malar J. 2011;10:204.CrossRefPubMedPubMedCentral Tynan A, Atkinson J-A, Toaliu H, Taleo G, Fitzgerald L, Whittaker M, et al. Community participation for malaria elimination in Tafea Province, Vanuatu: part II. Social and cultural aspects of treatment-seeking behaviour. Malar J. 2011;10:204.CrossRefPubMedPubMedCentral
15.
go back to reference Ruebush TK, Zeissig R, Koplan JP, Klein RE, Godoy HA. Community participation in malaria surveillance and treatment III. An evaluation of modifications in the volunteer collaborator network of Guatemala. Am J Trop Med Hyg. 1994;50:85–98.CrossRefPubMed Ruebush TK, Zeissig R, Koplan JP, Klein RE, Godoy HA. Community participation in malaria surveillance and treatment III. An evaluation of modifications in the volunteer collaborator network of Guatemala. Am J Trop Med Hyg. 1994;50:85–98.CrossRefPubMed
16.
go back to reference Ghebreyesus TA, Alemayehu T, Bosman A, Witten KH, Teklehaimanot A. Community participation in malaria control in Tigray region Ethiopia. Acta Trop. 1996;61:145–56.CrossRefPubMed Ghebreyesus TA, Alemayehu T, Bosman A, Witten KH, Teklehaimanot A. Community participation in malaria control in Tigray region Ethiopia. Acta Trop. 1996;61:145–56.CrossRefPubMed
17.
go back to reference Atkinson J, Vallely A, Fitzgerald L, Whittaker M, Tanner M. The architecture and effect of participation: a systematic review of community participation for communicable disease control and elimination. Implications for malaria elimination. Malar J. 2011;10:225.CrossRefPubMedPubMedCentral Atkinson J, Vallely A, Fitzgerald L, Whittaker M, Tanner M. The architecture and effect of participation: a systematic review of community participation for communicable disease control and elimination. Implications for malaria elimination. Malar J. 2011;10:225.CrossRefPubMedPubMedCentral
18.
go back to reference Geissbühler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar Es Salaam, Tanzania. PLoS One. 2009;4:e0005107.CrossRef Geissbühler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar Es Salaam, Tanzania. PLoS One. 2009;4:e0005107.CrossRef
19.
go back to reference Vanek MJ, Shoo B, Mtasiwa D, Kiama M, Lindsay SW, Fillinger U, et al. Community-based surveillance of malaria vector larval habitats: a baseline study in urban Dar es Salaam, Tanzania. BMC Public Health. 2006;6:154.CrossRefPubMedPubMedCentral Vanek MJ, Shoo B, Mtasiwa D, Kiama M, Lindsay SW, Fillinger U, et al. Community-based surveillance of malaria vector larval habitats: a baseline study in urban Dar es Salaam, Tanzania. BMC Public Health. 2006;6:154.CrossRefPubMedPubMedCentral
20.
go back to reference Maheu-Giroux M, Castro MC. Impact of community-based larviciding on the prevalence of malaria infection in Dar es Salaam, Tanzania. PLoS One. 2013;8:e0071638.CrossRef Maheu-Giroux M, Castro MC. Impact of community-based larviciding on the prevalence of malaria infection in Dar es Salaam, Tanzania. PLoS One. 2013;8:e0071638.CrossRef
21.
22.
go back to reference Mwangungulu SP, Sumaye RD, Limwagu AJ, Siria DJ, Kaindoa EW, Okumu FO. Crowdsourcing vector surveillance: using community knowledge and experiences to predict densities and distribution of outdoor-biting mosquitoes in rural Tanzania. PLoS ONE. 2016;11:e0156388.CrossRefPubMedPubMedCentral Mwangungulu SP, Sumaye RD, Limwagu AJ, Siria DJ, Kaindoa EW, Okumu FO. Crowdsourcing vector surveillance: using community knowledge and experiences to predict densities and distribution of outdoor-biting mosquitoes in rural Tanzania. PLoS ONE. 2016;11:e0156388.CrossRefPubMedPubMedCentral
23.
go back to reference Kaindoa EW, Ngowo HS, Limwagu A, Mkandawile G, Kihonda J, Masalu JP, et al. New evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania. Wellcome Open Res. 2017;2:88.CrossRefPubMedPubMedCentral Kaindoa EW, Ngowo HS, Limwagu A, Mkandawile G, Kihonda J, Masalu JP, et al. New evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania. Wellcome Open Res. 2017;2:88.CrossRefPubMedPubMedCentral
24.
go back to reference Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA. 1997;94:338–42.CrossRefPubMed Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA. 1997;94:338–42.CrossRefPubMed
25.
go back to reference Kaindoa EW, Mkandawile G, Ligamba G, Kelly-Hope LA, Okumu FO. Correlations between household occupancy and malaria vector biting risk in rural Tanzanian villages: implications for high-resolution spatial targeting of control interventions. Malar J. 2016;15:199.CrossRefPubMedPubMedCentral Kaindoa EW, Mkandawile G, Ligamba G, Kelly-Hope LA, Okumu FO. Correlations between household occupancy and malaria vector biting risk in rural Tanzanian villages: implications for high-resolution spatial targeting of control interventions. Malar J. 2016;15:199.CrossRefPubMedPubMedCentral
27.
go back to reference Konradsen F, Amerasinghe P, Van Der Hoek W, Amerasinghe F, Perera D, Piyaratne M. Strong association between house characteristics and malaria vectors in Sri Lanka. Am J Trop Med Hyg. 2003;68:177–81.CrossRefPubMed Konradsen F, Amerasinghe P, Van Der Hoek W, Amerasinghe F, Perera D, Piyaratne M. Strong association between house characteristics and malaria vectors in Sri Lanka. Am J Trop Med Hyg. 2003;68:177–81.CrossRefPubMed
28.
go back to reference Kirby MJ, Green C, Milligan PM. Risk factors for house entry by malaria vectors in a rural town and satellite villages in The Gambia. Malar J. 2008;7:2.CrossRefPubMedPubMedCentral Kirby MJ, Green C, Milligan PM. Risk factors for house entry by malaria vectors in a rural town and satellite villages in The Gambia. Malar J. 2008;7:2.CrossRefPubMedPubMedCentral
29.
go back to reference Russell TL, Lwetoijera DW, Knols BG, Takken W, Killeen GF, Kelly-Hope LA. Geographic coincidence of increased malaria transmission hazard and vulnerability occurring at the periphery of two Tanzanian villages. Malar J. 2013;12:24.CrossRefPubMedPubMedCentral Russell TL, Lwetoijera DW, Knols BG, Takken W, Killeen GF, Kelly-Hope LA. Geographic coincidence of increased malaria transmission hazard and vulnerability occurring at the periphery of two Tanzanian villages. Malar J. 2013;12:24.CrossRefPubMedPubMedCentral
30.
go back to reference Geubbels E, Amri S, Levira F, Schellenberg J, Masanja H, Nathan R. Health & Demographic Surveillance System Profile: the Ifakara Rural and Urban Health and Demographic Surveillance System (Ifakara HDSS). Int J Epidemiol. 2015;44:848–61.CrossRefPubMed Geubbels E, Amri S, Levira F, Schellenberg J, Masanja H, Nathan R. Health & Demographic Surveillance System Profile: the Ifakara Rural and Urban Health and Demographic Surveillance System (Ifakara HDSS). Int J Epidemiol. 2015;44:848–61.CrossRefPubMed
31.
go back to reference Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS ONE. 2017;12:e0177807.CrossRefPubMedPubMedCentral Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS ONE. 2017;12:e0177807.CrossRefPubMedPubMedCentral
32.
go back to reference Mboera LEG, Kihonda J, Braks MAH, Knols BGJ. Influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg. 1998;59:595–6.CrossRefPubMed Mboera LEG, Kihonda J, Braks MAH, Knols BGJ. Influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg. 1998;59:595–6.CrossRefPubMed
33.
go back to reference Gillies MT, Coetzee M. A Supplement to the Anophelinae of the South of the Sahara (Afrotropical Region). Publications of the South African Institute for Medical Research; 1987. p. 1–143. Gillies MT, Coetzee M. A Supplement to the Anophelinae of the South of the Sahara (Afrotropical Region). Publications of the South African Institute for Medical Research; 1987. p. 1–143.
34.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed
35.
go back to reference Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroun and evidence for a new species. Am J Trop Med Hyg. 2003;69:200–5.CrossRefPubMed Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroun and evidence for a new species. Am J Trop Med Hyg. 2003;69:200–5.CrossRefPubMed
36.
go back to reference Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.CrossRefPubMed Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.CrossRefPubMed
38.
go back to reference Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:51.CrossRef Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:51.CrossRef
39.
go back to reference Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.CrossRefPubMedPubMedCentral Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.CrossRefPubMedPubMedCentral
40.
go back to reference Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in the Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.CrossRefPubMedPubMedCentral Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in the Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.CrossRefPubMedPubMedCentral
41.
go back to reference Liu X, Wan F, Cirendunzhu Cirenwangla, Bai L, et al. Community knowledge and experience of mosquitoes and personal prevention and control practices in Lhasa, Tibet. Int J Environ Res Public Health. 2014;11:9919–37.CrossRefPubMedPubMedCentral Liu X, Wan F, Cirendunzhu Cirenwangla, Bai L, et al. Community knowledge and experience of mosquitoes and personal prevention and control practices in Lhasa, Tibet. Int J Environ Res Public Health. 2014;11:9919–37.CrossRefPubMedPubMedCentral
42.
go back to reference Opiyo P, Mukabana WR, Kiche I, Mathenge E, Killeen GF, Fillinger U. An exploratory study of community factors relevant for participatory malaria control on Rusinga Island, western Kenya. Malar J. 2007;6:48.CrossRefPubMedPubMedCentral Opiyo P, Mukabana WR, Kiche I, Mathenge E, Killeen GF, Fillinger U. An exploratory study of community factors relevant for participatory malaria control on Rusinga Island, western Kenya. Malar J. 2007;6:48.CrossRefPubMedPubMedCentral
43.
go back to reference Norris DE. Mosquito-borne diseases as a consequence of land use change. EcoHealth. 2004;1:19–24.CrossRef Norris DE. Mosquito-borne diseases as a consequence of land use change. EcoHealth. 2004;1:19–24.CrossRef
44.
go back to reference Sattler M, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, et al. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malar J. 2005;4:4.CrossRefPubMedPubMedCentral Sattler M, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, et al. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malar J. 2005;4:4.CrossRefPubMedPubMedCentral
45.
go back to reference Keiser J, Singer BH, Utzinger J. Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis. 2005;5:695–708.CrossRefPubMed Keiser J, Singer BH, Utzinger J. Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis. 2005;5:695–708.CrossRefPubMed
46.
go back to reference WHO. Manual on environmental management for mosquito control. Geneva: World Health Organization Offset Publication; 1982. p. 284. WHO. Manual on environmental management for mosquito control. Geneva: World Health Organization Offset Publication; 1982. p. 284.
47.
go back to reference Yohannes M, Haile M, Ghebreyesus TA, Witten KH, Getachew A, Byass P, et al. Can source reduction of mosquito larval habitat reduce malaria transmission in Tigray, Ethiopia? Trop Med Int Health. 2005;10:1274–85.CrossRefPubMed Yohannes M, Haile M, Ghebreyesus TA, Witten KH, Getachew A, Byass P, et al. Can source reduction of mosquito larval habitat reduce malaria transmission in Tigray, Ethiopia? Trop Med Int Health. 2005;10:1274–85.CrossRefPubMed
48.
49.
go back to reference Koenker H, Keating J, Alilio M, Acosta A, Lynch M, Nafo-Traore F. Strategic roles for behaviour change communication in a changing malaria landscape. Malar J. 2014;13:1.CrossRefPubMedPubMedCentral Koenker H, Keating J, Alilio M, Acosta A, Lynch M, Nafo-Traore F. Strategic roles for behaviour change communication in a changing malaria landscape. Malar J. 2014;13:1.CrossRefPubMedPubMedCentral
50.
go back to reference Kidane G, Morrow RH. Teaching mothers to provide home treatment of malaria in Tigray, Ethiopia: a randomised trial. Lancet. 2000;356:550–5.CrossRefPubMed Kidane G, Morrow RH. Teaching mothers to provide home treatment of malaria in Tigray, Ethiopia: a randomised trial. Lancet. 2000;356:550–5.CrossRefPubMed
51.
go back to reference WHO. Global vector control response 2017–2030. Geneva: World Health Organization; 2017. WHO. Global vector control response 2017–2030. Geneva: World Health Organization; 2017.
Metadata
Title
Housing gaps, mosquitoes and public viewpoints: a mixed methods assessment of relationships between house characteristics, malaria vector biting risk and community perspectives in rural Tanzania
Authors
Emmanuel W. Kaindoa
Marceline Finda
Jepchirchir Kiplagat
Gustav Mkandawile
Anna Nyoni
Maureen Coetzee
Fredros O. Okumu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2450-y

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue