Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Multiple insecticide resistance in Anopheles gambiae from Tanzania: a major concern for malaria vector control

Authors: William N. Kisinza, Theresia E. Nkya, Bilali Kabula, Hans J. Overgaard, Dennis J. Massue, Zawadi Mageni, George Greer, Naomi Kaspar, Mahdi Mohamed, Richard Reithinger, Sarah Moore, Lena M. Lorenz, Stephen Magesa

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Malaria vector control in Tanzania is based on use of long-lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS), which both rely on the use of chemical insecticides. The effectiveness of these control tools is endangered by the development of insecticide resistance in the major malaria vectors. This study was carried out to monitor the susceptibility status of major malaria vectors to insecticides used for IRS and LLINs in mainland Tanzania.

Methods

Mosquito larvae were collected in 20 sites of Tanzania mainland in 2015. Phenotypic resistance was determined using standard WHO susceptibility tests. Molecular assay were used to determine distribution of Anopheles gambiae sub-species. A microplate assay approach was used for identifying enzyme levels on single mosquitoes from each sites compared with a susceptible reference strain, An. gambiae sensu stricto (s.s.) Kisumu strain.

Results

Anopheles arabiensis was the dominant malaria specie in the country, accounting for 52% of the sibling species identified, while An. gambiae s.s. represented 48%. In Arumeru site, the dominant species was An. arabiensis, which was resistant to both pyrethroids (permethrin and deltamethrin), and pirimiphos-methyl, and had significant elevated levels of GSTs, non-specific esterases, and oxidase enzymes. An. arabiensis was also a dominant species in Kilombero and Kondoa sites, both were resistant to permethrin and deltamethrin with significant activity levels of oxidase enzymes. Resistance to bendiocarb was recorded in Ngara site where specie composition is evenly distributed between An. gambiae s.s. and An.arabiensis. Also bendiocarb resistance was recorded in Mbozi site, where An. gambiae s.s. is the dominant species.

Conclusions

Overall, this study confirmed resistance to all four insecticide classes in An. gambiae sensu lato in selected locations in Tanzania. Results are discussed in relation to resistance mechanisms and the optimization of resistance management strategies.
Literature
1.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2015. WHO. World malaria report. Geneva: World Health Organization; 2015.
2.
go back to reference Hougard JM, Corbel V, N’Guessan R, Darriet F, Chandre F, Akogbéto M, et al. Efficacy of mosquito nets treated with insecticide mixtures or mosaics against insecticide resistant Anopheles gambiae and Culex quinquefasciatus (Diptera: Culicidae) in Côte d’Ivoire. Bull Entomol Res. 2003;93:491–8.CrossRefPubMed Hougard JM, Corbel V, N’Guessan R, Darriet F, Chandre F, Akogbéto M, et al. Efficacy of mosquito nets treated with insecticide mixtures or mosaics against insecticide resistant Anopheles gambiae and Culex quinquefasciatus (Diptera: Culicidae) in Côte d’Ivoire. Bull Entomol Res. 2003;93:491–8.CrossRefPubMed
3.
go back to reference Ransom H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRef Ransom H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRef
4.
go back to reference Ministry of Health, Community Development, Gender, Elderly and Children [Tanzania Mainland], Ministry of Health [Zanzibar], National Bureau of Statistics, Office of the Chief Government Statistician, and ICF. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015–16. Dar es Salaam, Tanzania, and Rockville, Maryland, USA: MoHCDGEC, MoH, NBS, OCGS, and ICF; 2016. Ministry of Health, Community Development, Gender, Elderly and Children [Tanzania Mainland], Ministry of Health [Zanzibar], National Bureau of Statistics, Office of the Chief Government Statistician, and ICF. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015–16. Dar es Salaam, Tanzania, and Rockville, Maryland, USA: MoHCDGEC, MoH, NBS, OCGS, and ICF; 2016.
5.
go back to reference Magesa SM, Lengeler C, deSavigny D, Miller JE, Njau RJA, Kramer K, et al. Creating an “enabling environment” for taking insecticide treated nets to national scale: the Tanzanian experience. Malar J. 2005;4:34.CrossRefPubMedPubMedCentral Magesa SM, Lengeler C, deSavigny D, Miller JE, Njau RJA, Kramer K, et al. Creating an “enabling environment” for taking insecticide treated nets to national scale: the Tanzanian experience. Malar J. 2005;4:34.CrossRefPubMedPubMedCentral
6.
go back to reference Russell TL, Govella NJ, Azizii S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRefPubMedPubMedCentral Russell TL, Govella NJ, Azizii S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRefPubMedPubMedCentral
7.
go back to reference Bonner K, Mwita A, McElroy PD, Omari S, Mzava A, Lengeler C, et al. Design, implementation and evaluation of a national campaign to distribute nine million free LLINs to children under five years of age in Tanzania. Malar J. 2011;10:73.CrossRefPubMedPubMedCentral Bonner K, Mwita A, McElroy PD, Omari S, Mzava A, Lengeler C, et al. Design, implementation and evaluation of a national campaign to distribute nine million free LLINs to children under five years of age in Tanzania. Malar J. 2011;10:73.CrossRefPubMedPubMedCentral
8.
go back to reference Lalji S, Ngondi JM, Thawer NG, Tembo A, Mandike R, Mohamed A, et al. School distribution as keep-up strategy to maintain universal coverage of long-lasting insecticidal nets: implementation and results of a program in Southern Tanzania. Glob Health Sci Pract. 2016;4:251–63.CrossRefPubMedPubMedCentral Lalji S, Ngondi JM, Thawer NG, Tembo A, Mandike R, Mohamed A, et al. School distribution as keep-up strategy to maintain universal coverage of long-lasting insecticidal nets: implementation and results of a program in Southern Tanzania. Glob Health Sci Pract. 2016;4:251–63.CrossRefPubMedPubMedCentral
9.
go back to reference Kabula B, Tungu P, Malima R, Rowland M, Minja J, Wililo R, et al. Distribution and spread of pyrethroid and DDT resistance among the Anopheles gambiae complex in Tanzania. Med Vet Entomol. 2014;28:244–52.CrossRefPubMed Kabula B, Tungu P, Malima R, Rowland M, Minja J, Wililo R, et al. Distribution and spread of pyrethroid and DDT resistance among the Anopheles gambiae complex in Tanzania. Med Vet Entomol. 2014;28:244–52.CrossRefPubMed
10.
go back to reference Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;16:480. Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;16:480.
11.
go back to reference Matowo J, Kulkarni MA, Mosha FW, Oxborough RM, Kitau JA, et al. Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar J. 2010;9:193.CrossRefPubMedPubMedCentral Matowo J, Kulkarni MA, Mosha FW, Oxborough RM, Kitau JA, et al. Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar J. 2010;9:193.CrossRefPubMedPubMedCentral
12.
go back to reference Kabula B, Tungu P, Matowo J, Kitau J, Mweya C, Emidi B, et al. Susceptibility status of malaria vectors to insecticides commonly used for malaria control in Tanzania. Trop Med Int Health. 2012;17:742–50.CrossRefPubMed Kabula B, Tungu P, Matowo J, Kitau J, Mweya C, Emidi B, et al. Susceptibility status of malaria vectors to insecticides commonly used for malaria control in Tanzania. Trop Med Int Health. 2012;17:742–50.CrossRefPubMed
13.
go back to reference Kulkarni MA, Malima R, Mosha FW, Msangi S, Mrema E, Kabula B, et al. Efficacy of pyrethroid-treated nets against malaria vectors and nuisance-biting mosquitoes in Tanzania in areas with long-term insecticide-treated net use. Trop Med Int Health. 2007;12:1061–73.CrossRefPubMed Kulkarni MA, Malima R, Mosha FW, Msangi S, Mrema E, Kabula B, et al. Efficacy of pyrethroid-treated nets against malaria vectors and nuisance-biting mosquitoes in Tanzania in areas with long-term insecticide-treated net use. Trop Med Int Health. 2007;12:1061–73.CrossRefPubMed
14.
go back to reference Protopopoff N, Matowo N, Malima R, Kavishe R, Kaaya R, Wright A, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J. 2013;12:149.CrossRefPubMedPubMedCentral Protopopoff N, Matowo N, Malima R, Kavishe R, Kaaya R, Wright A, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J. 2013;12:149.CrossRefPubMedPubMedCentral
15.
go back to reference Kisinza W, Kabula B, Tungu P, Sindato C, Mweya C, Massue D, et al. Detection and monitoring of insecticide resistance in malaria vectors in Tanzania Mainland. Tanzania: Technical Report of the National Institute for Medical Research; 2011. Kisinza W, Kabula B, Tungu P, Sindato C, Mweya C, Massue D, et al. Detection and monitoring of insecticide resistance in malaria vectors in Tanzania Mainland. Tanzania: Technical Report of the National Institute for Medical Research; 2011.
16.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013.
17.
go back to reference Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–7.CrossRef Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–7.CrossRef
18.
go back to reference Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37–41.CrossRefPubMed Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37–41.CrossRefPubMed
19.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of Anopheles gambiae complex by the polymarase chain-reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed Scott JA, Brogdon WG, Collins FH. Identification of single specimens of Anopheles gambiae complex by the polymarase chain-reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed
20.
go back to reference LeOra Software LLC, Polo Plus, 1980. Pacific Southwest Forest and Range Experiment Station: Petaluma, California; 1980. LeOra Software LLC, Polo Plus, 1980. Pacific Southwest Forest and Range Experiment Station: Petaluma, California; 1980.
21.
go back to reference Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S, et al. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malar J. 2014;13:28.CrossRefPubMedPubMedCentral Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S, et al. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malar J. 2014;13:28.CrossRefPubMedPubMedCentral
22.
go back to reference Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, et al. Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis? PLoS ONE. 2012;7:e31481.CrossRefPubMedPubMedCentral Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, et al. Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis? PLoS ONE. 2012;7:e31481.CrossRefPubMedPubMedCentral
23.
go back to reference Russell TL, Lwetiojera DW, Maliti D, Chipwaza B, Kihonda J, Charlwood JD, et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 2010;9:187.CrossRefPubMedPubMedCentral Russell TL, Lwetiojera DW, Maliti D, Chipwaza B, Kihonda J, Charlwood JD, et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 2010;9:187.CrossRefPubMedPubMedCentral
24.
go back to reference Nkya TE, Mosha FW, Magesa S, Kisinza WN. Increased tolerance of Anopheles gambiae s.s. to chemical insecticides after exposure to agrochemical mixture. Tanzania J Health Res. 2014;16:329–32.CrossRef Nkya TE, Mosha FW, Magesa S, Kisinza WN. Increased tolerance of Anopheles gambiae s.s. to chemical insecticides after exposure to agrochemical mixture. Tanzania J Health Res. 2014;16:329–32.CrossRef
25.
go back to reference Nkya TE, Akhouayri I, Kisinza W, David JP. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol. 2013;43:407–16.CrossRefPubMed Nkya TE, Akhouayri I, Kisinza W, David JP. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol. 2013;43:407–16.CrossRefPubMed
26.
go back to reference Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 2000;30:1009–15.CrossRefPubMed Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 2000;30:1009–15.CrossRefPubMed
27.
go back to reference Ranson H, Hemingway J. Mosquito glutathione transferases. In: Sies H, Packer L, editors. Methods in enzymology, vol 401. Cambridge: Academic Press; 2005. p. 226–241. Ranson H, Hemingway J. Mosquito glutathione transferases. In: Sies H, Packer L, editors. Methods in enzymology, vol 401. Cambridge: Academic Press; 2005. p. 226–241.
28.
go back to reference Aïzoun N, Aïkpon R, Padonou GG, Oussou O, Oké-Agbo F, Gnanguenon V, et al. Mixed-function oxidases and esterases associated with permethrin, deltamethrin and bendiocarb resistance in Anopheles gambiae s.l. in the south-north transect Benin, West Africa. Parasit Vectors. 2013;6:223.CrossRefPubMedPubMedCentral Aïzoun N, Aïkpon R, Padonou GG, Oussou O, Oké-Agbo F, Gnanguenon V, et al. Mixed-function oxidases and esterases associated with permethrin, deltamethrin and bendiocarb resistance in Anopheles gambiae s.l. in the south-north transect Benin, West Africa. Parasit Vectors. 2013;6:223.CrossRefPubMedPubMedCentral
30.
go back to reference Ranson H, N’guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes; what are the implication for malaria controll? Trends Parasitol. 2011;27:91–8.CrossRefPubMed Ranson H, N’guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes; what are the implication for malaria controll? Trends Parasitol. 2011;27:91–8.CrossRefPubMed
31.
go back to reference David JP, Ismail HM, Chandor-Proust A, Paine MJ. Role of cytochrome P450 s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120429.CrossRefPubMedPubMedCentral David JP, Ismail HM, Chandor-Proust A, Paine MJ. Role of cytochrome P450 s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120429.CrossRefPubMedPubMedCentral
32.
go back to reference Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughes MF. In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos. 2009;37:221–8CrossRefPubMed Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughes MF. In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos. 2009;37:221–8CrossRefPubMed
Metadata
Title
Multiple insecticide resistance in Anopheles gambiae from Tanzania: a major concern for malaria vector control
Authors
William N. Kisinza
Theresia E. Nkya
Bilali Kabula
Hans J. Overgaard
Dennis J. Massue
Zawadi Mageni
George Greer
Naomi Kaspar
Mahdi Mohamed
Richard Reithinger
Sarah Moore
Lena M. Lorenz
Stephen Magesa
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2087-2

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue