Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Insecticide resistance in Anopheles arabiensis from Ethiopia (2012–2016): a nationwide study for insecticide resistance monitoring

Authors: Louisa A. Messenger, Josephat Shililu, Seth R. Irish, Gedeon Yohannes Anshebo, Alemayehu Getachew Tesfaye, Yemane Ye-Ebiyo, Sheleme Chibsa, Dereje Dengela, Gunawardena Dissanayake, Estifanos Kebede, Endalew Zemene, Abebe Asale, Mekonnen Yohannes, Hiwot Solomon Taffese, Kristen George, Christen Fornadel, Aklilu Seyoum, Robert A. Wirtz, Delenasaw Yewhalaw

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) remain the cornerstones of malaria vector control. However, the development of insecticide resistance and its implications for operational failure of preventative strategies are of concern. The aim of this study was to characterize insecticide resistance among Anopheles arabiensis populations in Ethiopia and describe temporal and spatial patterns of resistance between 2012 and 2016.

Methods

Between 2012 and 2016, resistance status of An. arabiensis was assessed annually during the long rainy seasons in study sites from seven of the nine regions in Ethiopia. Insecticide resistance levels were measured with WHO susceptibility tests and CDC bottle bioassays using insecticides from four chemical classes (organochlorines, pyrethroids, organophosphates and carbamates), with minor variations in insecticides tested and assays conducted between years. In selected sites, CDC synergist assays were performed by pre-exposing mosquitoes to piperonyl butoxide (PBO). In 2015 and 2016, mosquitoes from DDT and deltamethrin bioassays were randomly selected, identified to species-level and screened for knockdown resistance (kdr) by PCR.

Results

Intense resistance to DDT and pyrethroids was pervasive across Ethiopia, consistent with historic use of DDT for IRS and concomitant increases in insecticide-treated net coverage over the last 15 years. Longitudinal resistance trends to malathion, bendiocarb, propoxur and pirimiphos-methyl corresponded to shifts in the national insecticide policy. By 2016, resistance to the latter two insecticides had emerged, with the potential to jeopardize future long-term effectiveness of vector control activities in these areas. Between 2015 and 2016, the West African (L1014F) kdr allele was detected in 74.1% (n = 686/926) of specimens, with frequencies ranging from 31 to 100% and 33 to 100% in survivors from DDT and deltamethrin bioassays, respectively. Restoration of mosquito susceptibility, following pre-exposure to PBO, along with a lack of association between kdr allele frequency and An. arabiensis mortality rate, both indicate metabolic and target-site mutation mechanisms are contributing to insecticide resistance.

Conclusions

Data generated by this study will strengthen the National Malaria Control Programme’s insecticide resistance management strategy to safeguard continued efficacy of IRS and other malaria control methods in Ethiopia.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World Malaria Report 2016. Geneva: World Health Organization; 2016. WHO. World Malaria Report 2016. Geneva: World Health Organization; 2016.
2.
go back to reference President’s Malaria Initiative. Malaria Operational Plan FY 2016—Ethiopia. USAID; 2016. President’s Malaria Initiative. Malaria Operational Plan FY 2016—Ethiopia. USAID; 2016.
3.
go back to reference Africa Indoor Residual Spraying Project, A.A.I. Ethiopia: Entomological Monitoring of 2015 IRS Activities. Final Report. Addis Ababa, Ethiopia; 2015. Africa Indoor Residual Spraying Project, A.A.I. Ethiopia: Entomological Monitoring of 2015 IRS Activities. Final Report. Addis Ababa, Ethiopia; 2015.
4.
go back to reference MOH. National malaria strategic plan (2014–2020). Addis Ababa: Federal Democratic Republic of Ethiopia, Ministry of Health; 2014. MOH. National malaria strategic plan (2014–2020). Addis Ababa: Federal Democratic Republic of Ethiopia, Ministry of Health; 2014.
5.
go back to reference Abose T, Yeebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Reorientation and definition of the role of malaria vector control in Ethiopia. The epidemiology and control of malaria with special emphasis on the distribution, behaviour and susceptibility of insecticides of Anopheline vectors and chloroquine resistance in Zwai, central Ethiopia and other areas. WHO/MAL/98.1085; 1998. Abose T, Yeebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Reorientation and definition of the role of malaria vector control in Ethiopia. The epidemiology and control of malaria with special emphasis on the distribution, behaviour and susceptibility of insecticides of Anopheline vectors and chloroquine resistance in Zwai, central Ethiopia and other areas. WHO/MAL/98.1085; 1998.
6.
go back to reference Nigatu W, Petros B, Lulu M, Adunga N, Wirtz R, Tilahun D. Some aspects of malaria prevalence, vector infectivity and DDT resistance studies in Gambella Region, South Western Ethiopia. Ethiop J Health Dev. 1994;8:1–10. Nigatu W, Petros B, Lulu M, Adunga N, Wirtz R, Tilahun D. Some aspects of malaria prevalence, vector infectivity and DDT resistance studies in Gambella Region, South Western Ethiopia. Ethiop J Health Dev. 1994;8:1–10.
7.
go back to reference Balkew M, Gebre-Michael T, Hailu A. Insecticide susceptibility level of Anopheles arabiensis in two agro-development localities in eastern Ethiopia. Parassitologia. 2003;45:1–3.PubMed Balkew M, Gebre-Michael T, Hailu A. Insecticide susceptibility level of Anopheles arabiensis in two agro-development localities in eastern Ethiopia. Parassitologia. 2003;45:1–3.PubMed
8.
go back to reference Balkew M, Ibrahim M, Koekemoer LL, Brooke BD, Engers H, Aseffa A, et al. Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasites Vectors. 2010;3:40.CrossRefPubMedPubMedCentral Balkew M, Ibrahim M, Koekemoer LL, Brooke BD, Engers H, Aseffa A, et al. Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasites Vectors. 2010;3:40.CrossRefPubMedPubMedCentral
9.
go back to reference Yewhalaw D, Wassie F, Steurbaut W, Spanoghe P, Van Bortel W, Denis L, et al. Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE. 2011;6:e16066.CrossRefPubMedPubMedCentral Yewhalaw D, Wassie F, Steurbaut W, Spanoghe P, Van Bortel W, Denis L, et al. Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE. 2011;6:e16066.CrossRefPubMedPubMedCentral
10.
go back to reference Asale A, Getachew Y, Hailesilassie W, Speybroeck N, Duchateau L, Yewhalaw D. Evaluation of the efficacy of DDT indoor residual spraying and long-lasting insecticidal nets against insecticide resistant populations of Anopheles arabiensis Patton (Diptera: Culicidae) from Ethiopia using experimental huts. Parasites Vectors. 2014;7:131.CrossRefPubMedPubMedCentral Asale A, Getachew Y, Hailesilassie W, Speybroeck N, Duchateau L, Yewhalaw D. Evaluation of the efficacy of DDT indoor residual spraying and long-lasting insecticidal nets against insecticide resistant populations of Anopheles arabiensis Patton (Diptera: Culicidae) from Ethiopia using experimental huts. Parasites Vectors. 2014;7:131.CrossRefPubMedPubMedCentral
11.
go back to reference Abate A, Hadis M. Susceptibility of Anopheles gambiae s.l. to DDT, malathion, permethrin and deltamethrin in Ethiopia. Trop Med Int Health. 2011;16:486–91.CrossRefPubMed Abate A, Hadis M. Susceptibility of Anopheles gambiae s.l. to DDT, malathion, permethrin and deltamethrin in Ethiopia. Trop Med Int Health. 2011;16:486–91.CrossRefPubMed
12.
go back to reference Yewhalaw D, Asale A, Tushune K, Getachew Y, Duchateau L, Speybroeck N. Bio-efficacy of selected long-lasting insecticidal nets against pyrethroid resistant Anopheles arabiensis from South-Western Ethiopia. Parasites Vectors. 2012;5:159.CrossRefPubMedPubMedCentral Yewhalaw D, Asale A, Tushune K, Getachew Y, Duchateau L, Speybroeck N. Bio-efficacy of selected long-lasting insecticidal nets against pyrethroid resistant Anopheles arabiensis from South-Western Ethiopia. Parasites Vectors. 2012;5:159.CrossRefPubMedPubMedCentral
13.
go back to reference Massebo F, Balkew M, Gebre-Michael T, Lindtørn B. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia. Parasites Vectors. 2013;6:44.CrossRefPubMedPubMedCentral Massebo F, Balkew M, Gebre-Michael T, Lindtørn B. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia. Parasites Vectors. 2013;6:44.CrossRefPubMedPubMedCentral
14.
go back to reference Fettene M, Olana D, Christian RN, Koekemoer LL, Coetzee M. Insecticide resistance in Anopheles arabiensis from Ethiopia. Afr Entomol. 2013;21:89–94.CrossRef Fettene M, Olana D, Christian RN, Koekemoer LL, Coetzee M. Insecticide resistance in Anopheles arabiensis from Ethiopia. Afr Entomol. 2013;21:89–94.CrossRef
15.
go back to reference Balkew M, Getachew A, Chibsa S, Olana D, Reithinger R, Brogdon W. Insecticide resistance: a challenge to malaria vector control in Ethiopia. Malar J. 2012;11:139.CrossRef Balkew M, Getachew A, Chibsa S, Olana D, Reithinger R, Brogdon W. Insecticide resistance: a challenge to malaria vector control in Ethiopia. Malar J. 2012;11:139.CrossRef
16.
go back to reference FMoH. Insecticide resistance monitoring and management strategy for malaria vector control in Ethiopia. Disease prevention and control directorate. National malaria control and elimination programme. Ethiopia; 2016. FMoH. Insecticide resistance monitoring and management strategy for malaria vector control in Ethiopia. Disease prevention and control directorate. National malaria control and elimination programme. Ethiopia; 2016.
17.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013.
18.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. Report of the WHO informal consultation 28–30 September 1998. WHO/CDS/MAL/98.12; 1998. WHO. Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. Report of the WHO informal consultation 28–30 September 1998. WHO/CDS/MAL/98.12; 1998.
20.
go back to reference Gillies T, Coetzee M. Supplement of the Anopheles of Africa south of Sahara (Afrotropical region) Johannesburg: Republic of South Africa. Publication of the South African Institute of Medical Research; 1987. Gillies T, Coetzee M. Supplement of the Anopheles of Africa south of Sahara (Afrotropical region) Johannesburg: Republic of South Africa. Publication of the South African Institute of Medical Research; 1987.
21.
go back to reference Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37–41.CrossRefPubMed Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37–41.CrossRefPubMed
22.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed
23.
go back to reference Fettene M, Temu EA. Species-specific primer for identification of Anopheles quadriannulatus sp. B (Diptera: Culicidae) from Ethiopia using a multiplex polymerase chain reaction assay. J Med Entomol. 2003;40:112–5.CrossRefPubMed Fettene M, Temu EA. Species-specific primer for identification of Anopheles quadriannulatus sp. B (Diptera: Culicidae) from Ethiopia using a multiplex polymerase chain reaction assay. J Med Entomol. 2003;40:112–5.CrossRefPubMed
24.
go back to reference Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M. (Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt curve analysis. Malar J. 2006;5:16.CrossRefPubMedPubMedCentral Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M. (Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt curve analysis. Malar J. 2006;5:16.CrossRefPubMedPubMedCentral
25.
go back to reference Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vectors Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.CrossRefPubMed Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vectors Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.CrossRefPubMed
26.
go back to reference Ranson H, Jensen B, Vulule J, Wang X, Hemingway J, Collins FH. Identification of point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.CrossRefPubMed Ranson H, Jensen B, Vulule J, Wang X, Hemingway J, Collins FH. Identification of point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.CrossRefPubMed
27.
go back to reference Abbott WS. A method of computing the effectiveness of insecticide. J Econ Entomol. 1925;18:265–7.CrossRef Abbott WS. A method of computing the effectiveness of insecticide. J Econ Entomol. 1925;18:265–7.CrossRef
28.
go back to reference Owusu HF, Jancaryova D, Malone D, Müller P. Comparability between insecticide resistance bioassays for mosquito vectors: time to review current methodology? Parasites Vectors. 2015;8:357.CrossRefPubMedPubMedCentral Owusu HF, Jancaryova D, Malone D, Müller P. Comparability between insecticide resistance bioassays for mosquito vectors: time to review current methodology? Parasites Vectors. 2015;8:357.CrossRefPubMedPubMedCentral
29.
go back to reference Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360–3.PubMed Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360–3.PubMed
30.
go back to reference Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African Anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.CrossRefPubMedPubMedCentral Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African Anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.CrossRefPubMedPubMedCentral
31.
go back to reference Riveron JM, Chiumia M, Menze BD, Barnes KG, Irving H, Ibrahim SS, et al. Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control. Malar J. 2015;14:344.CrossRefPubMedPubMedCentral Riveron JM, Chiumia M, Menze BD, Barnes KG, Irving H, Ibrahim SS, et al. Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control. Malar J. 2015;14:344.CrossRefPubMedPubMedCentral
32.
go back to reference Sadasivaiah S, Tozan Y, Breman JG. Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: how can it be used for malaria control? Am J Trop Med Hyg. 2007;77:249–63.PubMed Sadasivaiah S, Tozan Y, Breman JG. Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: how can it be used for malaria control? Am J Trop Med Hyg. 2007;77:249–63.PubMed
33.
go back to reference Yeebiyo Y, Dengela D, Tesfaye AG, Anshebo GY, Kolyada L, Wirtz R, et al. Short persistence of bendiocarb sprayed on previous walls and its implications for the indoor residual spray program in Ethiopia. Parasites Vectors. 2016;9:266.CrossRefPubMedPubMedCentral Yeebiyo Y, Dengela D, Tesfaye AG, Anshebo GY, Kolyada L, Wirtz R, et al. Short persistence of bendiocarb sprayed on previous walls and its implications for the indoor residual spray program in Ethiopia. Parasites Vectors. 2016;9:266.CrossRefPubMedPubMedCentral
34.
go back to reference Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbé C, Yangalbé-Kalnoné E, Sagnon N, et al. Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J. 2009;8:299.CrossRefPubMedPubMedCentral Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbé C, Yangalbé-Kalnoné E, Sagnon N, et al. Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J. 2009;8:299.CrossRefPubMedPubMedCentral
35.
go back to reference Deressa W, Loha E, Balkew M, Hailu A, Gari T, Kenea O, et al. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: study protocol for a cluster randomized controlled trial. Trials. 2016;17:20.CrossRefPubMedPubMedCentral Deressa W, Loha E, Balkew M, Hailu A, Gari T, Kenea O, et al. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: study protocol for a cluster randomized controlled trial. Trials. 2016;17:20.CrossRefPubMedPubMedCentral
36.
go back to reference Abdalla H, Wilding CS, Nardini L, Pignatelli P, Koekemoer LL, Ranson H, et al. Insecticide resistance in Anopheles arabiensis in Sudan: temporal trends and underlying mechanisms. Parasites Vectors. 2014;7:213.CrossRefPubMedPubMedCentral Abdalla H, Wilding CS, Nardini L, Pignatelli P, Koekemoer LL, Ranson H, et al. Insecticide resistance in Anopheles arabiensis in Sudan: temporal trends and underlying mechanisms. Parasites Vectors. 2014;7:213.CrossRefPubMedPubMedCentral
37.
go back to reference Abuelmaali SA, Elaagip AH, Basheer MA, Frah EA, Ahmed FTA, Elhaj HFA, et al. Impacts of agricultural practices on insecticide resistance in the malaria vector Anopheles arabiensis in Khartoum State, Sudan. PLoS ONE. 2013;8:e80549.CrossRefPubMedPubMedCentral Abuelmaali SA, Elaagip AH, Basheer MA, Frah EA, Ahmed FTA, Elhaj HFA, et al. Impacts of agricultural practices on insecticide resistance in the malaria vector Anopheles arabiensis in Khartoum State, Sudan. PLoS ONE. 2013;8:e80549.CrossRefPubMedPubMedCentral
38.
go back to reference Wanjala CL, Mbugi JP, Ototo E, Gesuge M, Afrane YA, Atieli HE, et al. Pyrethroid and DDT resistance and organophosphate susceptibility among Anopheles spp. mosquitoes, Western Kenya. Emerg Infect Dis. 2014;21:2178–81.CrossRef Wanjala CL, Mbugi JP, Ototo E, Gesuge M, Afrane YA, Atieli HE, et al. Pyrethroid and DDT resistance and organophosphate susceptibility among Anopheles spp. mosquitoes, Western Kenya. Emerg Infect Dis. 2014;21:2178–81.CrossRef
39.
go back to reference MoH. Malaria Vector Control Situation Analysis. National Malaria Control Programme. Ministry of Health. The State of Eritrea; 2014. MoH. Malaria Vector Control Situation Analysis. National Malaria Control Programme. Ministry of Health. The State of Eritrea; 2014.
40.
go back to reference Aïzoun N, Osse R, Azondekon R, Alia R, Oussou O, Gnanguenon V, et al. Comparison of the standard WHO susceptibility tests and the CDC bottle bioassay for the determination of insecticide susceptibility in malaria vector and their correlation with biochemical and molecular biology assays in Benin, West Africa. Parasites Vectors. 2013;6:147.CrossRefPubMedPubMedCentral Aïzoun N, Osse R, Azondekon R, Alia R, Oussou O, Gnanguenon V, et al. Comparison of the standard WHO susceptibility tests and the CDC bottle bioassay for the determination of insecticide susceptibility in malaria vector and their correlation with biochemical and molecular biology assays in Benin, West Africa. Parasites Vectors. 2013;6:147.CrossRefPubMedPubMedCentral
41.
go back to reference Ochomo E, Bayoh MN, Brogdon WG, Gimnig JE, Ouma C, Vulule JM, et al. Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations. Med Vet Entomol. 2013;27:156–64.CrossRefPubMed Ochomo E, Bayoh MN, Brogdon WG, Gimnig JE, Ouma C, Vulule JM, et al. Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations. Med Vet Entomol. 2013;27:156–64.CrossRefPubMed
42.
go back to reference Fonseca-Gonzalez I, Cardenas R, Quiñones ML, McAllister J, Brogdon WG. Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldón populations from malaria endemic areas in Colombia. Parasitol Res. 2009;105:1399–409.CrossRefPubMed Fonseca-Gonzalez I, Cardenas R, Quiñones ML, McAllister J, Brogdon WG. Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldón populations from malaria endemic areas in Colombia. Parasitol Res. 2009;105:1399–409.CrossRefPubMed
43.
go back to reference Perea EZ, León RB, Salcedo MP, Brogdon WG, Devine GJ. Adaptation and evaluation of the bottle bioassay for monitoring insecticide resistance in disease vector mosquitoes in the Peruvian Amazon. Malar J. 2009;8:208.CrossRef Perea EZ, León RB, Salcedo MP, Brogdon WG, Devine GJ. Adaptation and evaluation of the bottle bioassay for monitoring insecticide resistance in disease vector mosquitoes in the Peruvian Amazon. Malar J. 2009;8:208.CrossRef
44.
go back to reference Aïzoun N, Azondekon R, Aïkpon R, Gnanguenon V, Osse R, Asidi A, et al. Study of the efficacy of a Wheaton coated bottle with permethrin and deltamethrin in laboratory conditions and a WHO impregnated paper with bendiocarb in field conditions. Asian Pac J Trop Biomed. 2014;4:492–7.CrossRefPubMedPubMedCentral Aïzoun N, Azondekon R, Aïkpon R, Gnanguenon V, Osse R, Asidi A, et al. Study of the efficacy of a Wheaton coated bottle with permethrin and deltamethrin in laboratory conditions and a WHO impregnated paper with bendiocarb in field conditions. Asian Pac J Trop Biomed. 2014;4:492–7.CrossRefPubMedPubMedCentral
45.
go back to reference Aïzoun N, Azondekon R, Akogbéto M. Determination of the days storage and re-use of a Wheaton coated bottle with DDT, fenitrothion, and bendiocarb in laboratory conditions. Int J Curr Microbiol App Sci. 2014;3:203–10. Aïzoun N, Azondekon R, Akogbéto M. Determination of the days storage and re-use of a Wheaton coated bottle with DDT, fenitrothion, and bendiocarb in laboratory conditions. Int J Curr Microbiol App Sci. 2014;3:203–10.
46.
go back to reference Reid MC, McKenzie FE. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar J. 2016;15:107.CrossRefPubMedPubMedCentral Reid MC, McKenzie FE. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar J. 2016;15:107.CrossRefPubMedPubMedCentral
47.
go back to reference Yewhalaw D, Bortel WV, Denis L, Coosemans M, Duchateau L, Speybroeck N. First evidence of high knockdown resistance frequency in Anopheles arabiensis (Diptera: Culicidae) in Ethiopia. Am J Trop Med Hyg. 2010;83:122–5.CrossRefPubMedPubMedCentral Yewhalaw D, Bortel WV, Denis L, Coosemans M, Duchateau L, Speybroeck N. First evidence of high knockdown resistance frequency in Anopheles arabiensis (Diptera: Culicidae) in Ethiopia. Am J Trop Med Hyg. 2010;83:122–5.CrossRefPubMedPubMedCentral
48.
go back to reference Ibrahim SS, Riverson JM, Stott R, Irving H, Wondji CS. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis. Insect Biochem Mol Biol. 2016;68:23–32.CrossRefPubMedPubMedCentral Ibrahim SS, Riverson JM, Stott R, Irving H, Wondji CS. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis. Insect Biochem Mol Biol. 2016;68:23–32.CrossRefPubMedPubMedCentral
49.
go back to reference Djogbénou L, Dabiré R, Diabaté A, Kengne P, Akogbéto JM, Chandre F. Identification and geographic distribution of the ACE-1 R mutation in the malaria vector Anopheles gambiae in South-Western Burkina Faso, West Africa. Am J Trop Med Hyg. 2008;78:298–302.PubMed Djogbénou L, Dabiré R, Diabaté A, Kengne P, Akogbéto JM, Chandre F. Identification and geographic distribution of the ACE-1 R mutation in the malaria vector Anopheles gambiae in South-Western Burkina Faso, West Africa. Am J Trop Med Hyg. 2008;78:298–302.PubMed
50.
go back to reference Dabiré RK, Namountougou M, Diabaté A, Soma DD, Bado J, Toé HK, et al. Distribution and frequency of kdr mutations within Anopheles gambiae s.l. populations and first report of the Ace. 1G119S mutation in Anopheles arabiensis from Burkina Faso (West Africa). PLoS ONE. 2014;9:e101484.CrossRefPubMedPubMedCentral Dabiré RK, Namountougou M, Diabaté A, Soma DD, Bado J, Toé HK, et al. Distribution and frequency of kdr mutations within Anopheles gambiae s.l. populations and first report of the Ace. 1G119S mutation in Anopheles arabiensis from Burkina Faso (West Africa). PLoS ONE. 2014;9:e101484.CrossRefPubMedPubMedCentral
Metadata
Title
Insecticide resistance in Anopheles arabiensis from Ethiopia (2012–2016): a nationwide study for insecticide resistance monitoring
Authors
Louisa A. Messenger
Josephat Shililu
Seth R. Irish
Gedeon Yohannes Anshebo
Alemayehu Getachew Tesfaye
Yemane Ye-Ebiyo
Sheleme Chibsa
Dereje Dengela
Gunawardena Dissanayake
Estifanos Kebede
Endalew Zemene
Abebe Asale
Mekonnen Yohannes
Hiwot Solomon Taffese
Kristen George
Christen Fornadel
Aklilu Seyoum
Robert A. Wirtz
Delenasaw Yewhalaw
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2115-2

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue