Skip to main content
Top
Published in: Malaria Journal 1/2006

Open Access 01-12-2006 | Methodology

Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis

Authors: Katrijn Verhaeghen, Wim Van Bortel, Patricia Roelants, Thierry Backeljau, Marc Coosemans

Published in: Malaria Journal | Issue 1/2006

Login to get access

Abstract

Background

Appropriate monitoring of vector resistance to insecticides is an integral component of planning and evaluation of insecticide use in malaria control programmes. The malaria vectors Anopheles gambiae s.s. and Anopheles arabiensis have developed resistance to pyrethroid insecticides as a result of a mechanism conferring reduced nervous system sensitivity, better known as knockdown resistance (kdr). In An. gambiae s.s. and An. arabiensis, two different substitutions in the para-type sodium channel, a L1014F substitution common in West Africa and a L1014S replacement found in Kenya, are linked with kdr. Two different allele-specific polymerase chain reactions (AS-PCR) are needed to detect these known kdr mutations. However, these AS-PCR assays rely on a single nucleotide polymorphism mismatch, which can result in unreliable results.

Methods

Here, a new assay for the detection of knockdown resistance in An. gambiae s.s. and An. arabiensis based on Fluorescence Resonance Energy Transfer/Melt Curve analysis (FRET/MCA) is presented and compared with the existing assays.

Results

The new FRET/MCA method has the important advantage of detecting both kdr alleles in one assay. Moreover, results show that the FRET/MCA is more reliable and more sensitive than the existing AS-PCR assays and is able to detect new genotypes. By using this technique, the presence of the East African kdr mutation (L1014S) is shown for the first time in An. arabiensis specimens from Uganda. In addition, a new kdr genotype is reported in An. gambiae s.s. from Uganda, where four An. gambiae s.s. mosquitoes possess both, the West (L1014F) and East (L1014S) African kdr allele, simultaneously.

Conclusion

The presence of both kdr mutations in the same geographical region shows the necessity of a reliable assay that enables to detect both mutations in one single assay. Hence, this new assay based on FRET/MCA will improve the screening of the kdr frequencies in An. gambiae s.s. and An. arabiensis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lund AE, Narahashi T: Kinetics of sodium channel modification as the basis for the variation in the nerve membrane effects of pyrethroids and DDT analogs. Pestic Biochem Physiol . 1983, 20: 203-216. 10.1016/0048-3575(83)90025-1.CrossRef Lund AE, Narahashi T: Kinetics of sodium channel modification as the basis for the variation in the nerve membrane effects of pyrethroids and DDT analogs. Pestic Biochem Physiol . 1983, 20: 203-216. 10.1016/0048-3575(83)90025-1.CrossRef
2.
go back to reference Soderlund DM, Knipple DC: The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol. 2003, 33: 563-577. 10.1016/S0965-1748(03)00023-7.CrossRefPubMed Soderlund DM, Knipple DC: The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol. 2003, 33: 563-577. 10.1016/S0965-1748(03)00023-7.CrossRefPubMed
3.
go back to reference Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998, 7: 179-184. 10.1046/j.1365-2583.1998.72062.x.CrossRefPubMed Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998, 7: 179-184. 10.1046/j.1365-2583.1998.72062.x.CrossRefPubMed
4.
go back to reference Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000, 9: 491-497. 10.1046/j.1365-2583.2000.00209.x.CrossRefPubMed Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000, 9: 491-497. 10.1046/j.1365-2583.2000.00209.x.CrossRefPubMed
5.
go back to reference Diabaté A, Baldet T, Chandre F, Dabire KR, Simard F, Ouedraogo JB, Guillet P, Hougard JM: First report of a kdr mutation in Anopheles arabiensis from Burkina Faso, West Africa. J Am Mosq Control Assoc. 2004, 20: 195-196.PubMed Diabaté A, Baldet T, Chandre F, Dabire KR, Simard F, Ouedraogo JB, Guillet P, Hougard JM: First report of a kdr mutation in Anopheles arabiensis from Burkina Faso, West Africa. J Am Mosq Control Assoc. 2004, 20: 195-196.PubMed
6.
go back to reference Stump AD, Atieli FK, Vulule JM, Besansky NJ: Dynamics of the pyrethroid knockdown resistance allele in Western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. Am J Trop Med Hyg. 2004, 70: 591-596.PubMed Stump AD, Atieli FK, Vulule JM, Besansky NJ: Dynamics of the pyrethroid knockdown resistance allele in Western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. Am J Trop Med Hyg. 2004, 70: 591-596.PubMed
7.
go back to reference Lynd A, Ranson H, McCall PJ, Randle NP, BlackIV WC, Walker ED, Donnelly MJ: A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae. Malar J. 2005, 4: 16-10.1186/1475-2875-4-16.PubMedCentralCrossRefPubMed Lynd A, Ranson H, McCall PJ, Randle NP, BlackIV WC, Walker ED, Donnelly MJ: A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae. Malar J. 2005, 4: 16-10.1186/1475-2875-4-16.PubMedCentralCrossRefPubMed
8.
go back to reference Gillies MT, Coetzee M: A supplement to the anophelinae of Africa south of the Sahara (Afrotropical region). Publications of the South African Institute for Medical Research. 1987, 55- Gillies MT, Coetzee M: A supplement to the anophelinae of Africa south of the Sahara (Afrotropical region). Publications of the South African Institute for Medical Research. 1987, 55-
9.
go back to reference Vythilingam I, Nitiaavathy K, Yi P, Bakotee B, Hugo B, Singh B, Palmer K: A highly sensitive, nested polymerase chain reaction based method using simple DNA extraction to detect malaria sporozoites in mosquitoes. Southeast Asian J Trop Med Public Health. 1999, 30: 631-635.PubMed Vythilingam I, Nitiaavathy K, Yi P, Bakotee B, Hugo B, Singh B, Palmer K: A highly sensitive, nested polymerase chain reaction based method using simple DNA extraction to detect malaria sporozoites in mosquitoes. Southeast Asian J Trop Med Public Health. 1999, 30: 631-635.PubMed
10.
go back to reference Wirtz RA, Sattabongkot J, Hall T, Burkot TR, Rosenberg R: Development and evaluation of an enzyme-linked immunosorbent assay for Plasmodium vivax -VK247 sporozoites. J Med Entomol. 1992, 29: 854-857.CrossRefPubMed Wirtz RA, Sattabongkot J, Hall T, Burkot TR, Rosenberg R: Development and evaluation of an enzyme-linked immunosorbent assay for Plasmodium vivax -VK247 sporozoites. J Med Entomol. 1992, 29: 854-857.CrossRefPubMed
11.
go back to reference Scott JA, Brogdon WG, Collins FH: Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993, 49: 520-529.PubMed Scott JA, Brogdon WG, Collins FH: Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993, 49: 520-529.PubMed
12.
go back to reference Schütz E, von Ashen N: Spreadsheet software for thermodynamic melting point prediction of oligonucleotide hybridization with and without mismatches. Biotechniques. 1999, 27: 1218-1224.PubMed Schütz E, von Ashen N: Spreadsheet software for thermodynamic melting point prediction of oligonucleotide hybridization with and without mismatches. Biotechniques. 1999, 27: 1218-1224.PubMed
Metadata
Title
Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis
Authors
Katrijn Verhaeghen
Wim Van Bortel
Patricia Roelants
Thierry Backeljau
Marc Coosemans
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2006
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-5-16

Other articles of this Issue 1/2006

Malaria Journal 1/2006 Go to the issue