Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta

Authors: Luis L. Fonseca, Chester J. Joyner, Mary R. Galinski, Eberhard O. Voit, MaHPIC Consortium

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Plasmodium vivax can cause severe malaria. The total parasite biomass during infections is correlated with the severity of disease but not necessarily quantified accurately by microscopy. This finding has raised the question whether there could be sub-populations of parasites that are not observed in peripheral blood smears but continue to contribute to the increase in parasite numbers that drive pathogenesis. Non-human primate infection models utilizing the closely related simian malaria parasite Plasmodium cynomolgi hold the potential for quantifying the magnitude of possibly unobserved infected red blood cell (iRBC) populations and determining how the presence of this hidden reservoir correlates with disease severity.

Methods

Time series data tracking the longitudinal development of parasitaemia in five Macaca mulatta infected with P. cynomolgi were used to design a computational model quantifying iRBCs that circulate in the blood versus those that are not detectable and are termed here as ‘concealed’. This terminology is proposed to distinguish such observations from the deep vascular and widespread ‘sequestration’ of Plasmodium falciparum iRBCs, which is governed by distinctly different molecular mechanisms.

Results

The computational model presented here clearly demonstrates that the observed growth data of iRBC populations are not consistent with the known biology and blood-stage cycle of P. cynomolgi. However, the discrepancies can be resolved when a sub-population of concealed iRBCs is taken into account. The model suggests that the early growth of a hidden parasite sub-population has the potential to drive disease. As an alternative, the data could be explained by the sequential release of merozoites from the liver over a number of days, but this scenario seems less likely.

Conclusions

Concealment of a non-circulating iRBC sub-population during P. cynomolgi infection of M. mulatta is an important aspect of this successful host–pathogen relationship. The data also support the likelihood that a sub-population of iRBCs of P. vivax has a comparable means to become withdrawn from the peripheral circulation. This inference has implications for understanding vivax biology and pathogenesis and stresses the importance of considering a concealed parasite reservoir with regard to vivax epidemiology and the quantification and treatment of P. vivax infections.
Appendix
Available only for authorised users
Literature
1.
4.
go back to reference Joyner C, Barnwell JW, Galinski MR. No more monkeying around: primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Front Microbiol. 2015;6:145.CrossRefPubMedPubMedCentral Joyner C, Barnwell JW, Galinski MR. No more monkeying around: primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Front Microbiol. 2015;6:145.CrossRefPubMedPubMedCentral
7.
go back to reference Joyner C, Moreno A, Meyer EVS, Cabrera-Mora M, The MaHPIC Consortium, Kissinger JC, et al. Plasmodium cynomolgi infections in rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections. Malar J. 2016;15:451.CrossRefPubMedPubMedCentral Joyner C, Moreno A, Meyer EVS, Cabrera-Mora M, The MaHPIC Consortium, Kissinger JC, et al. Plasmodium cynomolgi infections in rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections. Malar J. 2016;15:451.CrossRefPubMedPubMedCentral
8.
go back to reference World Health Organization. Control and elimination of Plasmodium vivax malaria: a technical brief. Geneva: World Health Organization; 2015. World Health Organization. Control and elimination of Plasmodium vivax malaria: a technical brief. Geneva: World Health Organization; 2015.
9.
go back to reference Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481.CrossRefPubMedPubMedCentral Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481.CrossRefPubMedPubMedCentral
10.
go back to reference Barber BE, William T, Grigg MJ, Parameswaran U, Piera KA, Price RN, et al. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS Pathog. 2015;11:e1004558.CrossRefPubMedPubMedCentral Barber BE, William T, Grigg MJ, Parameswaran U, Piera KA, Price RN, et al. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS Pathog. 2015;11:e1004558.CrossRefPubMedPubMedCentral
11.
go back to reference Field JW, Sandosham AA, Fong YL. A morphological study of the erythrocytic parasites in thick blood films. 2nd ed. Kuala Lumpur: The Economy Printers; 1963. Field JW, Sandosham AA, Fong YL. A morphological study of the erythrocytic parasites in thick blood films. 2nd ed. Kuala Lumpur: The Economy Printers; 1963.
12.
go back to reference Bernabeu M, Smith JD. EPCR and malaria severity: the center of a perfect storm. Trends Parasitol. 2017;33:295–308.CrossRefPubMed Bernabeu M, Smith JD. EPCR and malaria severity: the center of a perfect storm. Trends Parasitol. 2017;33:295–308.CrossRefPubMed
13.
go back to reference Hviid L, Jensen AT. PfEMP1 - A parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis. Adv Parasitol. 2015;88:51–84.CrossRefPubMed Hviid L, Jensen AT. PfEMP1 - A parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis. Adv Parasitol. 2015;88:51–84.CrossRefPubMed
14.
go back to reference Bignami A, Bastianelli G. Osservazioni sulle febbri malariche estive-autunnali. La Riforma Medica (Napoli). 1890;232:1334–5. Bignami A, Bastianelli G. Osservazioni sulle febbri malariche estive-autunnali. La Riforma Medica (Napoli). 1890;232:1334–5.
15.
go back to reference Chen Q, Barragan A, Fernandez V, Sundstrom A, Schlichtherle M, Sahlen A, et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med. 1998;187:15–23.CrossRefPubMedPubMedCentral Chen Q, Barragan A, Fernandez V, Sundstrom A, Schlichtherle M, Sahlen A, et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med. 1998;187:15–23.CrossRefPubMedPubMedCentral
16.
go back to reference Rowe JA, Moulds JM, Newbold CI, Miller LHP. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997;388:292–5.CrossRefPubMed Rowe JA, Moulds JM, Newbold CI, Miller LHP. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997;388:292–5.CrossRefPubMed
17.
go back to reference Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15:479–91.CrossRefPubMed Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15:479–91.CrossRefPubMed
18.
go back to reference Yam XY, Niang M, Madnani KG, Preiser PR. Three is a crowd-new insights into rosetting in Plasmodium falciparum. Trends Parasitol. 2017;33:309–20.CrossRefPubMed Yam XY, Niang M, Madnani KG, Preiser PR. Three is a crowd-new insights into rosetting in Plasmodium falciparum. Trends Parasitol. 2017;33:309–20.CrossRefPubMed
19.
20.
go back to reference David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci USA. 1983;80:5075–9.CrossRefPubMedPubMedCentral David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci USA. 1983;80:5075–9.CrossRefPubMedPubMedCentral
21.
go back to reference Hommel M, David PH, Oligino LD. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983;157:1137–48.CrossRefPubMed Hommel M, David PH, Oligino LD. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983;157:1137–48.CrossRefPubMed
22.
go back to reference Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, Le Roch KG, et al. Plasmodium knowlesi a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology. 2017:1–16. Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, Le Roch KG, et al. Plasmodium knowlesi a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology. 2017:1–16.
23.
go back to reference del Portillo HA, Fernandez-Becerra C, Bowman S, Oliver K, Preuss M, Sanchez CP, et al. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature. 2001;410:839–42.CrossRefPubMed del Portillo HA, Fernandez-Becerra C, Bowman S, Oliver K, Preuss M, Sanchez CP, et al. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature. 2001;410:839–42.CrossRefPubMed
24.
go back to reference Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012;44:1051–5.CrossRefPubMedPubMedCentral Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012;44:1051–5.CrossRefPubMedPubMedCentral
25.
go back to reference Auburn S, Serre D, Pearson RD, Amato R, Sriprawat K, To S, et al. Genomic analysis reveals a common breakpoint in amplifications of the Plasmodium vivax multidrug resistance 1 locus in Thailand. J Infect Dis. 2016;214:1235–42.CrossRefPubMedPubMedCentral Auburn S, Serre D, Pearson RD, Amato R, Sriprawat K, To S, et al. Genomic analysis reveals a common breakpoint in amplifications of the Plasmodium vivax multidrug resistance 1 locus in Thailand. J Infect Dis. 2016;214:1235–42.CrossRefPubMedPubMedCentral
26.
go back to reference Pasini EM, Böhme U, Rutledge GG, Voorberg-Van-der Wel A, Sanders M, Berriman M, et al. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res. 2017;2:42.CrossRefPubMedPubMedCentral Pasini EM, Böhme U, Rutledge GG, Voorberg-Van-der Wel A, Sanders M, Berriman M, et al. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res. 2017;2:42.CrossRefPubMedPubMedCentral
27.
go back to reference Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol. 2010;170:65–73.CrossRefPubMed Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol. 2010;170:65–73.CrossRefPubMed
28.
go back to reference Frech C, Chen N. Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genom. 2013;14:427.CrossRef Frech C, Chen N. Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genom. 2013;14:427.CrossRef
29.
go back to reference Janssen CS, Phillips RS, Turner CM, Barrett MP. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. Nucleic Acids Res. 2004;32:5712–20.CrossRefPubMedPubMedCentral Janssen CS, Phillips RS, Turner CM, Barrett MP. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. Nucleic Acids Res. 2004;32:5712–20.CrossRefPubMedPubMedCentral
30.
go back to reference Carvalho BO, Lopes SCP, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, et al. On the cytoadhesion of Plasmodium vivax—infected erythrocytes. J Infect Dis. 2010;202:638–47.CrossRefPubMed Carvalho BO, Lopes SCP, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, et al. On the cytoadhesion of Plasmodium vivax—infected erythrocytes. J Infect Dis. 2010;202:638–47.CrossRefPubMed
31.
go back to reference Anderson DC, Lapp SA, Akinyi S, Meyer EV, Barnwell JW, Korir-Morrison C, et al. Plasmodium vivax trophozoite-stage proteomes. J Proteom. 2015;115:157–76.CrossRef Anderson DC, Lapp SA, Akinyi S, Meyer EV, Barnwell JW, Korir-Morrison C, et al. Plasmodium vivax trophozoite-stage proteomes. J Proteom. 2015;115:157–76.CrossRef
32.
go back to reference Anderson DC, Lapp SA, Barnwell JW, Galinski MR. A large-scale Plasmodium vivax trophozoite-schizont transition proteome includes oxidized, cell death, autophagy and cytoadhesion proteins. 2017, in press. Anderson DC, Lapp SA, Barnwell JW, Galinski MR. A large-scale Plasmodium vivax trophozoite-schizont transition proteome includes oxidized, cell death, autophagy and cytoadhesion proteins. 2017, in press.
33.
go back to reference Akinyi S, Hanssen E, Meyer EV, Jiang J, Korir CC, Singh B, et al. A 95 kDa protein of Plasmodium vivax and P. cynomolgi visualized by three-dimensional tomography in the caveola-vesicle complexes (Schüffner’s dots) of infected erythrocytes is a member of the PHIST family. Mol Microbiol. 2012;84:816–31.CrossRefPubMedPubMedCentral Akinyi S, Hanssen E, Meyer EV, Jiang J, Korir CC, Singh B, et al. A 95 kDa protein of Plasmodium vivax and P. cynomolgi visualized by three-dimensional tomography in the caveola-vesicle complexes (Schüffner’s dots) of infected erythrocytes is a member of the PHIST family. Mol Microbiol. 2012;84:816–31.CrossRefPubMedPubMedCentral
34.
go back to reference Barnwell JW, Ingravallo P, Galinski MR, Matsumoto Y, Aikawa M. Plasmodium vivax: malarial proteins associated with the membrane-bound caveola-vesicle complexes and cytoplasmic cleft structures of infected erythrocytes. Exp Parasitol. 1990;70:85–99.CrossRefPubMed Barnwell JW, Ingravallo P, Galinski MR, Matsumoto Y, Aikawa M. Plasmodium vivax: malarial proteins associated with the membrane-bound caveola-vesicle complexes and cytoplasmic cleft structures of infected erythrocytes. Exp Parasitol. 1990;70:85–99.CrossRefPubMed
35.
go back to reference Auburn S, Böhme U, Steinbiss S, Trimarsanto H, Hostetler J, Sanders M, et al. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes. Wellcome Open Res. 2016;1:4.CrossRefPubMedPubMedCentral Auburn S, Böhme U, Steinbiss S, Trimarsanto H, Hostetler J, Sanders M, et al. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes. Wellcome Open Res. 2016;1:4.CrossRefPubMedPubMedCentral
36.
go back to reference Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood. 2015;125:1314–24.CrossRefPubMedPubMedCentral Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood. 2015;125:1314–24.CrossRefPubMedPubMedCentral
37.
go back to reference Loeffler M, Pantel K, Wulff H, Wichmann HE. A mathematical model of erythropoiesis in mice and rats. Part 1: structure of the model. Cell Tissue Kinet. 1989;22:13–30.PubMed Loeffler M, Pantel K, Wulff H, Wichmann HE. A mathematical model of erythropoiesis in mice and rats. Part 1: structure of the model. Cell Tissue Kinet. 1989;22:13–30.PubMed
38.
go back to reference Schirm S, Engel C, Loeffler M, Scholz M. A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration. PLoS ONE. 2013;8:e65630.CrossRefPubMedPubMedCentral Schirm S, Engel C, Loeffler M, Scholz M. A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration. PLoS ONE. 2013;8:e65630.CrossRefPubMedPubMedCentral
39.
go back to reference Schirm S, Engel C, Loeffler M, Scholz M. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment. Theor Biol Med Model. 2014;11:24.CrossRefPubMedPubMedCentral Schirm S, Engel C, Loeffler M, Scholz M. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment. Theor Biol Med Model. 2014;11:24.CrossRefPubMedPubMedCentral
40.
go back to reference Tewa JJ, Fokouop R, Mewoli B, Bowong B. Mathematical analysis of a general class of ordinary differential equations coming from within-hosts models of malaria with immune effectors. Appl Math Comput. 2012;218:7347–461. Tewa JJ, Fokouop R, Mewoli B, Bowong B. Mathematical analysis of a general class of ordinary differential equations coming from within-hosts models of malaria with immune effectors. Appl Math Comput. 2012;218:7347–461.
41.
go back to reference Fonseca LL, Alezi HS, Moreno A, Barnwell JW, Galinski MR, Voit EO. Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection. Malar J. 2016;15:410.CrossRefPubMedPubMedCentral Fonseca LL, Alezi HS, Moreno A, Barnwell JW, Galinski MR, Voit EO. Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection. Malar J. 2016;15:410.CrossRefPubMedPubMedCentral
42.
go back to reference Fonseca LL, Voit EO. Comparison of mathematical frameworks for modeling erythropoiesis in the context of malaria infection. Math Biosci. 2015;270:224–36.CrossRefPubMedPubMedCentral Fonseca LL, Voit EO. Comparison of mathematical frameworks for modeling erythropoiesis in the context of malaria infection. Math Biosci. 2015;270:224–36.CrossRefPubMedPubMedCentral
43.
go back to reference Jakeman GN, Saul A, Hogarth WL, Collins WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 1999;119(Pt 2):127–33.CrossRefPubMed Jakeman GN, Saul A, Hogarth WL, Collins WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 1999;119(Pt 2):127–33.CrossRefPubMed
44.
go back to reference Hetzel C, Anderson RM. The within-host cellular dynamics of bloodstage malaria: theoretical and experimental studies. Parasitology. 1996;113(Pt 1):25–38.CrossRefPubMed Hetzel C, Anderson RM. The within-host cellular dynamics of bloodstage malaria: theoretical and experimental studies. Parasitology. 1996;113(Pt 1):25–38.CrossRefPubMed
46.
go back to reference van Noort SP, Nunes MC, Weedall GD, Hviid L, Gomes MG. Immune selection and within-host competition can structure the repertoire of variant surface antigens in Plasmodium falciparum—a mathematical model. PLoS ONE. 2010;5:e9778.CrossRefPubMedPubMedCentral van Noort SP, Nunes MC, Weedall GD, Hviid L, Gomes MG. Immune selection and within-host competition can structure the repertoire of variant surface antigens in Plasmodium falciparum—a mathematical model. PLoS ONE. 2010;5:e9778.CrossRefPubMedPubMedCentral
47.
go back to reference Gutierrez JB, Galinski MR, Cantrell S, Voit EO. From within host dynamics to the epidemiology of infectious disease: scientific overview and challenges. Math Biosci. 2015;270:143–55.CrossRefPubMedPubMedCentral Gutierrez JB, Galinski MR, Cantrell S, Voit EO. From within host dynamics to the epidemiology of infectious disease: scientific overview and challenges. Math Biosci. 2015;270:143–55.CrossRefPubMedPubMedCentral
48.
go back to reference Jha P. Mathematics and malaria. eLife. 2012:e00385. Jha P. Mathematics and malaria. eLife. 2012:e00385.
49.
go back to reference Cromer D, Best SE, Engwerda C, Haque A, Davenport M. Where have all the parasites gone? Modelling early malaria parasite sequestration dynamics. PLoS ONE. 2013;8:e55961.CrossRefPubMedPubMedCentral Cromer D, Best SE, Engwerda C, Haque A, Davenport M. Where have all the parasites gone? Modelling early malaria parasite sequestration dynamics. PLoS ONE. 2013;8:e55961.CrossRefPubMedPubMedCentral
50.
go back to reference Cunnington AJ, Bretscher MT, Nogaro SI, Riley EM, Walther M. Comparison of parasite sequestration in uncomplicated and severe childhood Plasmodium falciparum malaria. J Infect. 2013;67:220–30.CrossRefPubMedPubMedCentral Cunnington AJ, Bretscher MT, Nogaro SI, Riley EM, Walther M. Comparison of parasite sequestration in uncomplicated and severe childhood Plasmodium falciparum malaria. J Infect. 2013;67:220–30.CrossRefPubMedPubMedCentral
51.
go back to reference Davis TM, Krishna S, Looareesuwan S, Supanaranond W, Pukrittayakamee S, Attatamsoonthorn K, et al. Erythrocyte sequestration and anemia in severe falciparum malaria. Analysis of acute changes in venous hematocrit using a simple mathematical model. J Clin Invest. 1990;86:793–800.CrossRefPubMedPubMedCentral Davis TM, Krishna S, Looareesuwan S, Supanaranond W, Pukrittayakamee S, Attatamsoonthorn K, et al. Erythrocyte sequestration and anemia in severe falciparum malaria. Analysis of acute changes in venous hematocrit using a simple mathematical model. J Clin Invest. 1990;86:793–800.CrossRefPubMedPubMedCentral
52.
go back to reference Gravenor MB, van Hensbroek MB, Kwiatkowski D. Estimating sequestered parasite population dynamics in cerebral malaria. Proc Natl Acad Sci USA. 1998;95:7620–4.CrossRefPubMedPubMedCentral Gravenor MB, van Hensbroek MB, Kwiatkowski D. Estimating sequestered parasite population dynamics in cerebral malaria. Proc Natl Acad Sci USA. 1998;95:7620–4.CrossRefPubMedPubMedCentral
53.
go back to reference Khoury DS, Cromer D, Best SE, James KR, Kim PS, Engwerda CR, et al. Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria. Infect Immun. 2014;82:212–20.CrossRefPubMedPubMedCentral Khoury DS, Cromer D, Best SE, James KR, Kim PS, Engwerda CR, et al. Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria. Infect Immun. 2014;82:212–20.CrossRefPubMedPubMedCentral
54.
go back to reference Khoury DS, Cromer D, Best SE, James KR, Sebina I, Haque A, et al. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria. Sci Rep. 2015;5:9412.CrossRefPubMedPubMedCentral Khoury DS, Cromer D, Best SE, James KR, Sebina I, Haque A, et al. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria. Sci Rep. 2015;5:9412.CrossRefPubMedPubMedCentral
55.
go back to reference Gravenor MB, Lloyd AL, Kremsner PG, Missinou MA, English M, Marsh K, et al. A model for estimating total parasite load in falciparum malaria patients. J Theor Biol. 2002;217:137–48.CrossRefPubMed Gravenor MB, Lloyd AL, Kremsner PG, Missinou MA, English M, Marsh K, et al. A model for estimating total parasite load in falciparum malaria patients. J Theor Biol. 2002;217:137–48.CrossRefPubMed
57.
go back to reference Coatney G, Collins WE, Warren M, Contacos P. Plasmodium falciparum (Welch, 1897). The primate malarias. Division of Parasitic Disease; 1971. Coatney G, Collins WE, Warren M, Contacos P. Plasmodium falciparum (Welch, 1897). The primate malarias. Division of Parasitic Disease; 1971.
58.
go back to reference Hobbs TR, Blue SW, Park BS, Greisel JJ, Conn PM, Pau FK. Measurement of blood volume in adult Rhesus macaques (Macaca mulatta). J Am Assoc Lab Anim Sci. 2015;54:687–93.PubMedPubMedCentral Hobbs TR, Blue SW, Park BS, Greisel JJ, Conn PM, Pau FK. Measurement of blood volume in adult Rhesus macaques (Macaca mulatta). J Am Assoc Lab Anim Sci. 2015;54:687–93.PubMedPubMedCentral
60.
go back to reference Joyner C, MaHPIC Consortium, Wood JS, Moreno A, Garcia A, Galinski MR. Severe and complicated cynomolgi malaria in a rhesus macaque resulted in similar histopathological changes as those seen in human malaria. Am J Trop Med Hyg. 2017;97:548–55. doi:10.4269/ajtmh.4216-0742.CrossRef Joyner C, MaHPIC Consortium, Wood JS, Moreno A, Garcia A, Galinski MR. Severe and complicated cynomolgi malaria in a rhesus macaque resulted in similar histopathological changes as those seen in human malaria. Am J Trop Med Hyg. 2017;97:548–55. doi:10.​4269/​ajtmh.​4216-0742.CrossRef
61.
go back to reference Chotivanich K, Udomsangpetch R, Simpson JA, Newton P, Pukrittayakamee S, Looareesuwan S, et al. Parasite multiplication potential and the severity of Falciparum malaria. J Infect Dis. 2000;181:1206–9.CrossRefPubMed Chotivanich K, Udomsangpetch R, Simpson JA, Newton P, Pukrittayakamee S, Looareesuwan S, et al. Parasite multiplication potential and the severity of Falciparum malaria. J Infect Dis. 2000;181:1206–9.CrossRefPubMed
62.
go back to reference Galinski MR, Barnwell JW. Nonhuman primate models for human malaria research. Nonhum Primates Biomed Res (Second Edition). 2012;2:299–323.CrossRef Galinski MR, Barnwell JW. Nonhuman primate models for human malaria research. Nonhum Primates Biomed Res (Second Edition). 2012;2:299–323.CrossRef
63.
65.
go back to reference Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455:757–63.CrossRefPubMedPubMedCentral Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455:757–63.CrossRefPubMedPubMedCentral
66.
67.
go back to reference Fremount HN, Rossan RN. Sites of sequestration of the Achiote strain of Plasmodium vivax-infected red blood cells in the marmoset Sanguinius geoffroyi. Trans Am Microsc Soc. 1991;110:361–3.CrossRef Fremount HN, Rossan RN. Sites of sequestration of the Achiote strain of Plasmodium vivax-infected red blood cells in the marmoset Sanguinius geoffroyi. Trans Am Microsc Soc. 1991;110:361–3.CrossRef
68.
go back to reference Fremount HN, Rossan RN. Anatomical distribution of developing trophozoites and schizonts of Plasmodium vivax in Aotus lemurinus lemurinus and Saimiri sciureus. J Parasitol. 1990;76:428–30.CrossRefPubMed Fremount HN, Rossan RN. Anatomical distribution of developing trophozoites and schizonts of Plasmodium vivax in Aotus lemurinus lemurinus and Saimiri sciureus. J Parasitol. 1990;76:428–30.CrossRefPubMed
Metadata
Title
A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta
Authors
Luis L. Fonseca
Chester J. Joyner
Mary R. Galinski
Eberhard O. Voit
MaHPIC Consortium
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2008-4

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue