Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection

Authors: Luis L. Fonseca, Harnel S. Alezi, Alberto Moreno, John W. Barnwell, Mary R. Galinski, Eberhard O. Voit

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Malaria is the most deadly parasitic disease in humans globally, and the long-time coexistence with malaria has left indelible marks in the human genome that are the causes of a variety of genetic disorders. Although anaemia is a common clinical complication of malaria, the root causes and mechanisms involved in the pathogenesis of malarial anaemia are unclear and difficult to study in humans. Non-human primate (NHP) model systems enable the mechanistic study and quantification of underlying causative factors of malarial anaemia, and particularly the onset of severe anaemia.

Methods

Data were obtained in the course of Plasmodium coatneyi infections of malaria-naïve and semi-immune rhesus macaques (Macaca mulatta), whose red blood cells (RBCs) were labelled in situ with biotin at the time the infections were initiated. The data were used for a survival analysis that permitted, for the first time, an accurate estimation of the lifespan of erythrocytes in macaques. The data furthermore formed the basis for the development and parameterization of a recursive dynamic model of erythrocyte turnover, which was used for the quantification of RBC production and removal in each macaque.

Results

The computational analysis demonstrated that the lifespan of erythrocytes in macaques is 98 ± 21 days. The model also unambiguously showed that death due to senescence and parasitaemia is not sufficient to account for the extent of infection-induced anaemia. Specifically, the model permits, for the first time, the quantification of the different causes of RBC death, namely, normal senescence, age-independent random loss, parasitization, and bystander effects in uninfected cells. Such a dissection of the overall RBC removal process is hardly possible with experimental means alone. In the infected malaria-naïve macaques, death of erythrocytes by normal physiological senescence processes accounts for 20 % and parasitization for only 4 %, whereas bystander effects are associated with an astonishing 76 % of total RBC losses. Model-based comparisons of alternative mechanisms involved in the bystander effect revealed that most of the losses are likely due to a process of removing uninfected RBCs of all age classes and only minimally due to an increased rate of senescence of the uninfected RBCs.

Conclusions

A new malaria blood-stage model was developed for the analysis of data characterizing P. coatneyi infections of M. mulatta. The model used a discrete and recursive framework with age-structure that allowed the quantification of the most significant pathophysiological processes of RBC removal. The computational results revealed that the malarial anaemia caused by this parasite is mostly due to a loss of uninfected RBCs by an age-independent process. The biological identity and complete mechanism of this process is not fully understood and requires further investigation.
Literature
2.
go back to reference Mangano VD, Modiano D. An evolutionary perspective of how infection drives human genome diversity: the case of malaria. Curr Opin Immunol. 2014;30C:39–47.CrossRef Mangano VD, Modiano D. An evolutionary perspective of how infection drives human genome diversity: the case of malaria. Curr Opin Immunol. 2014;30C:39–47.CrossRef
3.
go back to reference Taylor SM, Cerami C, Fairhurst RM. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis. PLoS Pathog. 2013;9:e1003327.CrossRefPubMedPubMedCentral Taylor SM, Cerami C, Fairhurst RM. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis. PLoS Pathog. 2013;9:e1003327.CrossRefPubMedPubMedCentral
4.
go back to reference Nagel RL, Roth EF Jr. Malaria and red cell genetic defects. Blood. 1989;74:1213–21.PubMed Nagel RL, Roth EF Jr. Malaria and red cell genetic defects. Blood. 1989;74:1213–21.PubMed
5.
go back to reference Hutagalung R, Wilairatana P, Looareesuwan S, Brittenham GM, Aikawa M, Gordeuk VR. Influence of hemoglobin E trait on the severity of falciparum malaria. J Infect Dis. 1999;179:283–6.CrossRefPubMed Hutagalung R, Wilairatana P, Looareesuwan S, Brittenham GM, Aikawa M, Gordeuk VR. Influence of hemoglobin E trait on the severity of falciparum malaria. J Infect Dis. 1999;179:283–6.CrossRefPubMed
6.
go back to reference May J, Evans JA, Timmann C, Ehmen C, Busch W, Thye T, et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007;297:2220–6.CrossRefPubMed May J, Evans JA, Timmann C, Ehmen C, Busch W, Thye T, et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007;297:2220–6.CrossRefPubMed
7.
go back to reference Ayi K, Min-Oo G, Serghides L, Crockett M, Kirby-Allen M, Quirt I, et al. Pyruvate kinase deficiency and malaria. N Engl J Med. 2008;358:1805–10.CrossRefPubMed Ayi K, Min-Oo G, Serghides L, Crockett M, Kirby-Allen M, Quirt I, et al. Pyruvate kinase deficiency and malaria. N Engl J Med. 2008;358:1805–10.CrossRefPubMed
8.
go back to reference Coatney GR, Collins WE, Warren M, Contacos PG. The primate malarias. Bethesda; National Institute of Allergy and Infectious Diseases (US); 2003. Coatney GR, Collins WE, Warren M, Contacos PG. The primate malarias. Bethesda; National Institute of Allergy and Infectious Diseases (US); 2003.
9.
go back to reference Collins WE, Jeffery GM, Roberts JM. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am J Trop Med Hyg. 2003;68:410–2.PubMed Collins WE, Jeffery GM, Roberts JM. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am J Trop Med Hyg. 2003;68:410–2.PubMed
10.
go back to reference Jakeman GN, Saul A, Hogarth WL, Collins WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 1999;119:127–33.CrossRefPubMed Jakeman GN, Saul A, Hogarth WL, Collins WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 1999;119:127–33.CrossRefPubMed
11.
go back to reference Price RN, Simpson JA, Nosten F, Luxemburger C, Hkirjaroen L, ter Kuile F, et al. Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65:614–22.PubMedPubMedCentral Price RN, Simpson JA, Nosten F, Luxemburger C, Hkirjaroen L, ter Kuile F, et al. Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65:614–22.PubMedPubMedCentral
12.
go back to reference Vargas-Serrato E, Corredor V, Galinski MR. Phylogenetic analysis of CSP and MSP-9 gene sequences demonstrates the close relationship of Plasmodium coatneyi to Plasmodium knowlesi. Infect Genet Evol. 2003;3:67–73.CrossRefPubMed Vargas-Serrato E, Corredor V, Galinski MR. Phylogenetic analysis of CSP and MSP-9 gene sequences demonstrates the close relationship of Plasmodium coatneyi to Plasmodium knowlesi. Infect Genet Evol. 2003;3:67–73.CrossRefPubMed
14.
go back to reference Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, Barnwell JW, et al. Plasmodium coatneyi in rhesus macaques replicates the multisystemic dysfunction of severe malaria in humans. Infect Immun. 2013;81:1889–904.CrossRefPubMedPubMedCentral Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, Barnwell JW, et al. Plasmodium coatneyi in rhesus macaques replicates the multisystemic dysfunction of severe malaria in humans. Infect Immun. 2013;81:1889–904.CrossRefPubMedPubMedCentral
15.
go back to reference Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong’echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci. 2011;7:1427–42.CrossRefPubMedPubMedCentral Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong’echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci. 2011;7:1427–42.CrossRefPubMedPubMedCentral
16.
go back to reference Fonseca LL, Voit EO. Comparison of mathematical frameworks for modeling erythropoiesis in the context of malaria infection. Math Biosci. 2015;270:224–36.CrossRefPubMed Fonseca LL, Voit EO. Comparison of mathematical frameworks for modeling erythropoiesis in the context of malaria infection. Math Biosci. 2015;270:224–36.CrossRefPubMed
17.
go back to reference McKendrick AG. Applications of the mathematics to medical problems. Proc Edinburgh Math Soc. 1926;44:98.CrossRef McKendrick AG. Applications of the mathematics to medical problems. Proc Edinburgh Math Soc. 1926;44:98.CrossRef
18.
go back to reference Lotka AJ. Elements of physical biology. Baltimore: Williams and Wilkins; 1925. Lotka AJ. Elements of physical biology. Baltimore: Williams and Wilkins; 1925.
19.
go back to reference de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol. 2014;5:9.PubMedPubMedCentral de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol. 2014;5:9.PubMedPubMedCentral
20.
go back to reference Kipps T. The organization and structure of lymphoid tissues. In: Kaushansky K, Lichtman M, Kipps T, Seligsohn U, Prchal J, editors. Williams Hematology. New York: McGraw-Hill Medical; 2011. p. 75–84. Kipps T. The organization and structure of lymphoid tissues. In: Kaushansky K, Lichtman M, Kipps T, Seligsohn U, Prchal J, editors. Williams Hematology. New York: McGraw-Hill Medical; 2011. p. 75–84.
23.
go back to reference Schluter K, Drenckhahn D. Co-clustering of denatured hemoglobin with band 3: its role in binding of autoantibodies against band 3 to abnormal and aged erythrocytes. Proc Natl Acad Sci USA. 1986;83:6137–41.CrossRefPubMedPubMedCentral Schluter K, Drenckhahn D. Co-clustering of denatured hemoglobin with band 3: its role in binding of autoantibodies against band 3 to abnormal and aged erythrocytes. Proc Natl Acad Sci USA. 1986;83:6137–41.CrossRefPubMedPubMedCentral
24.
go back to reference Pantaleo A, Giribaldi G, Mannu F, Arese P, Turrini F. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions. Autoimmun Rev. 2008;7:457–62.CrossRefPubMed Pantaleo A, Giribaldi G, Mannu F, Arese P, Turrini F. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions. Autoimmun Rev. 2008;7:457–62.CrossRefPubMed
25.
go back to reference Arashiki N, Kimata N, Manno S, Mohandas N, Takakuwa Y. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence. Biochemistry. 2013;52:5760–9.CrossRefPubMedPubMedCentral Arashiki N, Kimata N, Manno S, Mohandas N, Takakuwa Y. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence. Biochemistry. 2013;52:5760–9.CrossRefPubMedPubMedCentral
26.
go back to reference Lutz HU, Nater M, Stammler P. Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology. 1993;80:191–6.PubMedPubMedCentral Lutz HU, Nater M, Stammler P. Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology. 1993;80:191–6.PubMedPubMedCentral
27.
go back to reference Lutz HU, Stammler P, Fasler S. How naturally occurring anti-band 3 antibodies stimulate C3b deposition to senescent and oxidatively stressed red blood cells. Biomed Biochim Acta. 1990;49:S224–9.PubMed Lutz HU, Stammler P, Fasler S. How naturally occurring anti-band 3 antibodies stimulate C3b deposition to senescent and oxidatively stressed red blood cells. Biomed Biochim Acta. 1990;49:S224–9.PubMed
28.
go back to reference Kay MM. Band 3 and its alterations in health and disease. Cell Mol Biol. 2004;50:117–38.PubMed Kay MM. Band 3 and its alterations in health and disease. Cell Mol Biol. 2004;50:117–38.PubMed
29.
go back to reference Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond. 1825;115:513–83.CrossRef Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond. 1825;115:513–83.CrossRef
30.
go back to reference Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18:293–7. Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18:293–7.
31.
go back to reference Makeham WM. On the law of mortality and the construction of annuity tables. Assur Mag J Inst Actuar. 1860;8:301–10. Makeham WM. On the law of mortality and the construction of annuity tables. Assur Mag J Inst Actuar. 1860;8:301–10.
32.
go back to reference Loeffler M, Pantel K, Wulff H, Wichmann HE. A mathematical-model of erythropoiesis in mice and rats. 1. Structure of the model. Cell Tissue Kinet. 1989;22:13–30.PubMed Loeffler M, Pantel K, Wulff H, Wichmann HE. A mathematical-model of erythropoiesis in mice and rats. 1. Structure of the model. Cell Tissue Kinet. 1989;22:13–30.PubMed
33.
go back to reference Schirm S, Engel C, Loeffler M, Scholz M. A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration. PLoS ONE. 2013;8:e65630.CrossRefPubMedPubMedCentral Schirm S, Engel C, Loeffler M, Scholz M. A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration. PLoS ONE. 2013;8:e65630.CrossRefPubMedPubMedCentral
34.
go back to reference Schirm S, Engel C, Loeffler M, Scholz M. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment. Theor Biol Med Model. 2014;11:24.CrossRefPubMedPubMedCentral Schirm S, Engel C, Loeffler M, Scholz M. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment. Theor Biol Med Model. 2014;11:24.CrossRefPubMedPubMedCentral
35.
go back to reference Gross AJ, Clark V. Survival distributions: reliability applications in the biomedical sciences. New York: Wiley; 1975. Gross AJ, Clark V. Survival distributions: reliability applications in the biomedical sciences. New York: Wiley; 1975.
36.
go back to reference Eyles DE, Fong YL, Warren M, Guinn E, Sandosham AA, Wharton RH. Plasmodium coatneyi, a new species of primate malaria from Malaya. Am J Trop Med Hyg. 1962;11:597–604. Eyles DE, Fong YL, Warren M, Guinn E, Sandosham AA, Wharton RH. Plasmodium coatneyi, a new species of primate malaria from Malaya. Am J Trop Med Hyg. 1962;11:597–604.
37.
go back to reference Beutler E. Destruction of erythrocytes. In: Kaushansky K, Lichtman M, Kipps T, Seligsohn U, Prchal J, editors. Williams hematology. New York: McGraw-Hill Medical; 2011. p. 449–54. Beutler E. Destruction of erythrocytes. In: Kaushansky K, Lichtman M, Kipps T, Seligsohn U, Prchal J, editors. Williams hematology. New York: McGraw-Hill Medical; 2011. p. 449–54.
38.
go back to reference Omodeo-Sale F, Motti A, Basilico N, Parapini S, Olliaro P, Taramelli D. Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum. Blood. 2003;102:705–11.CrossRefPubMed Omodeo-Sale F, Motti A, Basilico N, Parapini S, Olliaro P, Taramelli D. Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum. Blood. 2003;102:705–11.CrossRefPubMed
39.
go back to reference Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ. Malarial anemia: of mice and men. Blood. 2007;110:18–28.CrossRefPubMed Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ. Malarial anemia: of mice and men. Blood. 2007;110:18–28.CrossRefPubMed
40.
go back to reference Evans KJ, Hansen DS, van Rooijen N, Buckingham LA, Schofield L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood. 2006;107:1192–9.CrossRefPubMedPubMedCentral Evans KJ, Hansen DS, van Rooijen N, Buckingham LA, Schofield L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood. 2006;107:1192–9.CrossRefPubMedPubMedCentral
Metadata
Title
Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection
Authors
Luis L. Fonseca
Harnel S. Alezi
Alberto Moreno
John W. Barnwell
Mary R. Galinski
Eberhard O. Voit
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1465-5

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue