Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Repellent efficacy of DEET, MyggA, neem (Azedirachta indica) oil and chinaberry (Melia azedarach) oil against Anopheles arabiensis, the principal malaria vector in Ethiopia

Authors: Ephrem Abiy, Teshome Gebre-Michael, Meshesha Balkew, Girmay Medhin

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

In Ethiopia, Anopheles arabiensis is the main vector responsible for the transmission of malaria in the country and its control mainly involves application of indoor residual spraying (IRS) and use of insecticide-treated bed nets (ITNs).

Objective

Although the role of repellents for reducing man-vector contact is documented in the literature, the response of An. arabiensis to repellents was not previously evaluated under field conditions in Ethiopia.

Method

The trial was conducted in Sodere village assessing the repellent activities of four repellents, of which, two of them were commercially available DEET (N, N-diethyl-1,3-methylbenzamide) and MyggA (p-methane diol) and the other two were laboratory- produced, 20% neem oil and 20% chinaberry oil. A 6 by 6 Latin square design was employed by involving six volunteers who received rotated treatments of repellents and the Ethiopian Niger seed, noog abyssinia (Guizotia abyssinia), and locally called as noog oil (diluents to the two plant oils). Each volunteer also served as control. Volunteers were positioned at a distance of 20–40 m from each other and each was treated with one of the repellents, Niger seed/noog/ oil or untreated. Landing mosquitoes were collected from dusk to down using tests tubes. The tests were done in three replicates.

Results

Both DEET and MyggA provided more than 96% protection. The mean protection time for DEET was 8 hrs while the time for MyggA was 6 hrs. Protection obtained from neem oil and chinaberry oil was almost similar (more than 70%), however, the complete protection time for neem was 3 hrs, while that of chinaberry oil was one hour.

Conclusion

The commercial products and laboratory-produced repellents can be utilized by individuals to avoid contact with An. arabiensis in Ethiopia.
Literature
2.
go back to reference MOH. National five year strategic plan for malaria prevention and control in Ethiopia; 2006–2010. Addis Ababa, Ethiopia: Ministry of Health; 2007. p. 1–48. MOH. National five year strategic plan for malaria prevention and control in Ethiopia; 2006–2010. Addis Ababa, Ethiopia: Ministry of Health; 2007. p. 1–48.
3.
go back to reference MOH. Entomological profile of malaria in Ethiopia. Addis Ababa, Ethiopia: Ministry of Health; 2009. p. 1–16. MOH. Entomological profile of malaria in Ethiopia. Addis Ababa, Ethiopia: Ministry of Health; 2009. p. 1–16.
4.
go back to reference Coetzee M. Distribution of the African malaria vectors of the Anopheles gambiae complex. Am J Trop Med Hyg. 2004;70:103–4.PubMed Coetzee M. Distribution of the African malaria vectors of the Anopheles gambiae complex. Am J Trop Med Hyg. 2004;70:103–4.PubMed
5.
go back to reference White NJ. Malaria. In: Cook G, Zumla A, editors. Manson’s Tropical Diseases, 21st edition. London: Elsevier Science Limited; 2003. p. 1205. White NJ. Malaria. In: Cook G, Zumla A, editors. Manson’s Tropical Diseases, 21st edition. London: Elsevier Science Limited; 2003. p. 1205.
6.
go back to reference Service M. Medical entomology for students, Anopheline mosquitoes. 3rd edition. Cambridge University Press: Cambridge; 2004. p. 34–49. Service M. Medical entomology for students, Anopheline mosquitoes. 3rd edition. Cambridge University Press: Cambridge; 2004. p. 34–49.
7.
go back to reference Hunt RH, Coetzee M, Fetene M. The Anopheles gambiae complex: a new species from Ethiopia. Trans R Soc Trop Med Hyg. 1998;92:231–5.PubMedCrossRef Hunt RH, Coetzee M, Fetene M. The Anopheles gambiae complex: a new species from Ethiopia. Trans R Soc Trop Med Hyg. 1998;92:231–5.PubMedCrossRef
8.
go back to reference Abose T, Yeebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Re-orientation and definition of malaria vector control in Ethiopia. In: World Health Organization, WHO/MAL/98.1085. Geneva: WHO; 1998. p. 31. Abose T, Yeebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Re-orientation and definition of malaria vector control in Ethiopia. In: World Health Organization, WHO/MAL/98.1085. Geneva: WHO; 1998. p. 31.
9.
go back to reference Balkew M, Ibrahim M, Koekemoer LL, Brooke BD, Engers H, Aseffa A, et al. Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasit Vectors. 2010;3:40.PubMedCentralPubMedCrossRef Balkew M, Ibrahim M, Koekemoer LL, Brooke BD, Engers H, Aseffa A, et al. Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasit Vectors. 2010;3:40.PubMedCentralPubMedCrossRef
10.
go back to reference Balkew M, Gebre-Michael T, Hailu A. Insecticide susceptibility level of Anopheles arabiensis in two agro-development localities in eastern Ethiopia. Parasitologia. 2003;45:1–3. Balkew M, Gebre-Michael T, Hailu A. Insecticide susceptibility level of Anopheles arabiensis in two agro-development localities in eastern Ethiopia. Parasitologia. 2003;45:1–3.
11.
go back to reference Karunamoorthi K, Adane M, Fentahun W. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia. Parasitol Res. 2008;103:529–34.PubMedCrossRef Karunamoorthi K, Adane M, Fentahun W. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia. Parasitol Res. 2008;103:529–34.PubMedCrossRef
12.
go back to reference Brain A, Smith L, Lines J, Ensink J, Cameron M. Smoke and malaria: are interventions to reduce exposure to indoor air pollution likely to increase exposure to mosquitoes? Trans R Soc Trop Med Hyg. 2007;101:1065–71.CrossRef Brain A, Smith L, Lines J, Ensink J, Cameron M. Smoke and malaria: are interventions to reduce exposure to indoor air pollution likely to increase exposure to mosquitoes? Trans R Soc Trop Med Hyg. 2007;101:1065–71.CrossRef
13.
go back to reference Gupta RK, Rutledge LC. Laboratory evaluation of controlled-release repellent formulations on human volunteers under three climatic regimens. J Am Mosq Control Assoc. 1994;5:52–5. Gupta RK, Rutledge LC. Laboratory evaluation of controlled-release repellent formulations on human volunteers under three climatic regimens. J Am Mosq Control Assoc. 1994;5:52–5.
14.
go back to reference Kebede Y, Gebre-Michael T, Blakew M. Laboratory and field evaluation of neem (Azedarchta indica A.Jus) and chinaberry (Melia azedarch L.) oils are repellents against Phlebotamus orientalis and P.bergroti (Diptera: Psychodidae) in Ethiopia. Acta Trop. 2009;113:145–50.PubMedCrossRef Kebede Y, Gebre-Michael T, Blakew M. Laboratory and field evaluation of neem (Azedarchta indica A.Jus) and chinaberry (Melia azedarch L.) oils are repellents against Phlebotamus orientalis and P.bergroti (Diptera: Psychodidae) in Ethiopia. Acta Trop. 2009;113:145–50.PubMedCrossRef
15.
go back to reference WHOPES. Guideline for efficacy testing of mosquito repellents for human skin. Control of neglected tropical diseases. WHO pesticide evaluation scheme (WHOPES). 2009;4:10–28. WHOPES. Guideline for efficacy testing of mosquito repellents for human skin. Control of neglected tropical diseases. WHO pesticide evaluation scheme (WHOPES). 2009;4:10–28.
16.
go back to reference Gillies MT, Coetzee M. A supplement to the Anophilinae of Africa south of the Sahara (Afro-tropical region). The South African Institute of Medical Research, Johannesburg, South Africa. 1987;55:127. Gillies MT, Coetzee M. A supplement to the Anophilinae of Africa south of the Sahara (Afro-tropical region). The South African Institute of Medical Research, Johannesburg, South Africa. 1987;55:127.
17.
go back to reference Costantinia C, Athanase B, Ilboudo-Sanogob E. Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535 and KBR 3023 against Anopheles gambiae complex and other Afro tropical vector mosquitoes. Trans R Soc Trop Med Hyg. 2004;98:644–52.CrossRef Costantinia C, Athanase B, Ilboudo-Sanogob E. Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535 and KBR 3023 against Anopheles gambiae complex and other Afro tropical vector mosquitoes. Trans R Soc Trop Med Hyg. 2004;98:644–52.CrossRef
18.
go back to reference Frances SP, Robert MM, Cassie CJ, Raethea LH, Robert DC. Laboratory and field evaluation of commercial repellent formulations against mosquitoes (Diptera: Culicidae) in Queensland, Australia. Australian J Entomol. 2005;44:431–6.CrossRef Frances SP, Robert MM, Cassie CJ, Raethea LH, Robert DC. Laboratory and field evaluation of commercial repellent formulations against mosquitoes (Diptera: Culicidae) in Queensland, Australia. Australian J Entomol. 2005;44:431–6.CrossRef
19.
go back to reference Walker TW, Robert LL, Coperland RA, Githeko AK, Wirtz RA, Githure JJ, et al. Field evaluation of arthropod repellents, deet and a piperdine compound, AI3-37220 against Anopheles arabiensis and Anopheles funestus in western Kenya. J Am Mosq Control Assoc. 1996;2:172–6. Walker TW, Robert LL, Coperland RA, Githeko AK, Wirtz RA, Githure JJ, et al. Field evaluation of arthropod repellents, deet and a piperdine compound, AI3-37220 against Anopheles arabiensis and Anopheles funestus in western Kenya. J Am Mosq Control Assoc. 1996;2:172–6.
20.
go back to reference Frances SP, Mackenzie DO, Klun JA, Debboun M. Laboratory and field evaluation of SS220 and DEET against mosquitoes in Queensland, Australia. J Am Mosq Cont Ass. 2009;25:174–5.CrossRef Frances SP, Mackenzie DO, Klun JA, Debboun M. Laboratory and field evaluation of SS220 and DEET against mosquitoes in Queensland, Australia. J Am Mosq Cont Ass. 2009;25:174–5.CrossRef
21.
go back to reference Frances SP, Cooper RD, Popat S, Sweeny AW. Field evaluation of the repellents, DEET, CLC4, and AI3-37220 against Anopheles in Lae, Papua New Guinea. J Am Mosq Control Assoc. 1999;15:339–41.PubMed Frances SP, Cooper RD, Popat S, Sweeny AW. Field evaluation of the repellents, DEET, CLC4, and AI3-37220 against Anopheles in Lae, Papua New Guinea. J Am Mosq Control Assoc. 1999;15:339–41.PubMed
22.
go back to reference Sharma VP, Ansari MA, Razdan RK. Mosquito repellent action of neem (Azadirachta indica) oil. J Am Mosq Cont Assoc. 1995;9:359–60. Sharma VP, Ansari MA, Razdan RK. Mosquito repellent action of neem (Azadirachta indica) oil. J Am Mosq Cont Assoc. 1995;9:359–60.
23.
go back to reference Sharma VP, Nagpal BN, Srivastava A. Effectiveness of neem oil mats in repelling mosquitoes. Trans R Soc Trop Med Hyg. 1993;87:627–8.CrossRef Sharma VP, Nagpal BN, Srivastava A. Effectiveness of neem oil mats in repelling mosquitoes. Trans R Soc Trop Med Hyg. 1993;87:627–8.CrossRef
24.
go back to reference Mishra AK, Singh N, Sharma VP. Use of neem oil as a mosquito repellent in tribal villages of Mandla district, Madhya Pradesh. Indian J Malariol. 1995;32:99–103.PubMed Mishra AK, Singh N, Sharma VP. Use of neem oil as a mosquito repellent in tribal villages of Mandla district, Madhya Pradesh. Indian J Malariol. 1995;32:99–103.PubMed
Metadata
Title
Repellent efficacy of DEET, MyggA, neem (Azedirachta indica) oil and chinaberry (Melia azedarach) oil against Anopheles arabiensis, the principal malaria vector in Ethiopia
Authors
Ephrem Abiy
Teshome Gebre-Michael
Meshesha Balkew
Girmay Medhin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0705-4

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue