Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Methodology

Sample size determination for estimating antibody seroconversion rate under stable malaria transmission intensity

Authors: Nuno Sepúlveda, Chris Drakeley

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

In the last decade, several epidemiological studies have demonstrated the potential of using seroprevalence (SP) and seroconversion rate (SCR) as informative indicators of malaria burden in low transmission settings or in populations on the cusp of elimination. However, most of studies are designed to control ensuing statistical inference over parasite rates and not on these alternative malaria burden measures. SP is in essence a proportion and, thus, many methods exist for the respective sample size determination. In contrast, designing a study where SCR is the primary endpoint, is not an easy task because precision and statistical power are affected by the age distribution of a given population.

Methods

Two sample size calculators for SCR estimation are proposed. The first one consists of transforming the confidence interval for SP into the corresponding one for SCR given a known seroreversion rate (SRR). The second calculator extends the previous one to the most common situation where SRR is unknown. In this situation, data simulation was used together with linear regression in order to study the expected relationship between sample size and precision.

Results

The performance of the first sample size calculator was studied in terms of the coverage of the confidence intervals for SCR. The results pointed out to eventual problems of under or over coverage for sample sizes ≤250 in very low and high malaria transmission settings (SCR ≤ 0.0036 and SCR ≥ 0.29, respectively). The correct coverage was obtained for the remaining transmission intensities with sample sizes ≥ 50. Sample size determination was then carried out for cross-sectional surveys using realistic SCRs from past sero-epidemiological studies and typical age distributions from African and non-African populations. For SCR < 0.058, African studies require a larger sample size than their non-African counterparts in order to obtain the same precision. The opposite happens for the remaining transmission intensities. With respect to the second sample size calculator, simulation unravelled the likelihood of not having enough information to estimate SRR in low transmission settings (SCR ≤ 0.0108). In that case, the respective estimates tend to underestimate the true SCR. This problem is minimized by sample sizes of no less than 500 individuals. The sample sizes determined by this second method highlighted the prior expectation that, when SRR is not known, sample sizes are increased in relation to the situation of a known SRR. In contrast to the first sample size calculation, African studies would now require lesser individuals than their counterparts conducted elsewhere, irrespective of the transmission intensity.

Conclusions

Although the proposed sample size calculators can be instrumental to design future cross-sectional surveys, the choice of a particular sample size must be seen as a much broader exercise that involves weighting statistical precision with ethical issues, available human and economic resources, and possible time constraints. Moreover, if the sample size determination is carried out on varying transmission intensities, as done here, the respective sample sizes can also be used in studies comparing sites with different malaria transmission intensities. In conclusion, the proposed sample size calculators are a step towards the design of better sero-epidemiological studies. Their basic ideas show promise to be applied to the planning of alternative sampling schemes that may target or oversample specific age groups.
Appendix
Available only for authorised users
Literature
1.
go back to reference Corran P, Coleman P, Riley E, Drakeley C. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol. 2007;23:575–82.CrossRefPubMed Corran P, Coleman P, Riley E, Drakeley C. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol. 2007;23:575–82.CrossRefPubMed
2.
go back to reference Bousema T, Youssef RM, Cook J, Cox J, Alegana VA, Amran J, et al. Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008. Emerg Infect Dis. 2010;16:392–9.CrossRefPubMedCentralPubMed Bousema T, Youssef RM, Cook J, Cox J, Alegana VA, Amran J, et al. Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008. Emerg Infect Dis. 2010;16:392–9.CrossRefPubMedCentralPubMed
3.
go back to reference Drakeley CJ, Carneiro I, Reyburn H, Malima R, Lusingu JPA, Cox J, et al. Altitude-dependent and -independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J Infect Dis. 2005;191:1589–98.CrossRefPubMed Drakeley CJ, Carneiro I, Reyburn H, Malima R, Lusingu JPA, Cox J, et al. Altitude-dependent and -independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J Infect Dis. 2005;191:1589–98.CrossRefPubMed
4.
go back to reference Cook J, Kleinschmidt I, Schwabe C, Nseng G, Bousema T, Corran PH, et al. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, Equatorial Guinea. PLoS One. 2011;6:e25137.CrossRefPubMedCentralPubMed Cook J, Kleinschmidt I, Schwabe C, Nseng G, Bousema T, Corran PH, et al. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, Equatorial Guinea. PLoS One. 2011;6:e25137.CrossRefPubMedCentralPubMed
5.
go back to reference Arnold BF, Priest JW, Hamlin KL, Moss DM, Colford JM, Lammie PJ. Serological measures of malaria transmission in Haiti: comparison of longitudinal and cross-sectional methods. PLoS One. 2014;9:e93684.CrossRefPubMedCentralPubMed Arnold BF, Priest JW, Hamlin KL, Moss DM, Colford JM, Lammie PJ. Serological measures of malaria transmission in Haiti: comparison of longitudinal and cross-sectional methods. PLoS One. 2014;9:e93684.CrossRefPubMedCentralPubMed
6.
go back to reference Bretscher MT, Supargiyono S, Wijayanti MA, Nugraheni D, Widyastuti AN, Lobo NF, et al. Measurement of Plasmodium falciparum transmission intensity using serological cohort data from Indonesian school-children. Malar J. 2013;12:21.CrossRefPubMedCentralPubMed Bretscher MT, Supargiyono S, Wijayanti MA, Nugraheni D, Widyastuti AN, Lobo NF, et al. Measurement of Plasmodium falciparum transmission intensity using serological cohort data from Indonesian school-children. Malar J. 2013;12:21.CrossRefPubMedCentralPubMed
7.
go back to reference Cunha MG, Silva ES, Sepúlveda N, Costa SPT, Saboia TC, Guerreiro JF, et al. Serologically defined variations in malaria endemicity in Pará state, Brazil. PLoS One. 2014;9:e113357.CrossRefPubMedCentralPubMed Cunha MG, Silva ES, Sepúlveda N, Costa SPT, Saboia TC, Guerreiro JF, et al. Serologically defined variations in malaria endemicity in Pará state, Brazil. PLoS One. 2014;9:e113357.CrossRefPubMedCentralPubMed
8.
go back to reference Stewart L, Gosling R, Grin J, Gesase S, Campo J, Hashim R, et al. Rapid assessment of malaria transmission using age-specifc sero-conversion rates. PLoS One. 2009;4:6083.CrossRef Stewart L, Gosling R, Grin J, Gesase S, Campo J, Hashim R, et al. Rapid assessment of malaria transmission using age-specifc sero-conversion rates. PLoS One. 2009;4:6083.CrossRef
9.
go back to reference Cook J, Reid H, Iavro J, Kuwahata M, Taleo G, Clements A, et al. Using serological measures to monitor changes in malaria transmission in Vanuatu. Malar J. 2010;9:169.CrossRefPubMedCentralPubMed Cook J, Reid H, Iavro J, Kuwahata M, Taleo G, Clements A, et al. Using serological measures to monitor changes in malaria transmission in Vanuatu. Malar J. 2010;9:169.CrossRefPubMedCentralPubMed
10.
go back to reference Gonçalves L, de Oliveira MR, Pascoal C, Pires A. Sample size for estimating a binomial proportion: comparison of different methods. J Appl Stat. 2012;39:2453–73.CrossRef Gonçalves L, de Oliveira MR, Pascoal C, Pires A. Sample size for estimating a binomial proportion: comparison of different methods. J Appl Stat. 2012;39:2453–73.CrossRef
11.
go back to reference Stresman G, Kobayashi T, Kamanga A, Thuma PE, Mharakurwa S, Moss WJ, et al. Malaria research challenges in low prevalence settings. Malar J. 2012;11:353.CrossRefPubMedCentralPubMed Stresman G, Kobayashi T, Kamanga A, Thuma PE, Mharakurwa S, Moss WJ, et al. Malaria research challenges in low prevalence settings. Malar J. 2012;11:353.CrossRefPubMedCentralPubMed
12.
go back to reference Bekessy A, Molineaux L, Storey J. Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data. Bull World Health Organ. 1976;54:685–93.PubMedCentralPubMed Bekessy A, Molineaux L, Storey J. Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data. Bull World Health Organ. 1976;54:685–93.PubMedCentralPubMed
13.
go back to reference Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, Carneiro I, et al. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A. 2005;102:5108–13.CrossRefPubMedCentralPubMed Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, Carneiro I, et al. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A. 2005;102:5108–13.CrossRefPubMedCentralPubMed
14.
go back to reference von Fricken ME, Weppelmann TA, Lam B, Eaton WT, Schick L, Masse R, et al. Age-specific malaria seroprevalence rates: a cross-sectional analysis of malaria transmission in the Ouest and Sud-Est departments of Haiti. Malar J. 2014;13:361.CrossRef von Fricken ME, Weppelmann TA, Lam B, Eaton WT, Schick L, Masse R, et al. Age-specific malaria seroprevalence rates: a cross-sectional analysis of malaria transmission in the Ouest and Sud-Est departments of Haiti. Malar J. 2014;13:361.CrossRef
15.
16.
go back to reference Bonnefoix T, Bonnefoix P, Verdiel P, Sotto JJ. Fitting limiting dilution experiments with generalized linear models results in a test of the single-hit poisson assumption. J Immunol Methods. 1996;194:113–9.CrossRefPubMed Bonnefoix T, Bonnefoix P, Verdiel P, Sotto JJ. Fitting limiting dilution experiments with generalized linear models results in a test of the single-hit poisson assumption. J Immunol Methods. 1996;194:113–9.CrossRefPubMed
17.
go back to reference McCullagh P, Nelder JA. Generalized Linear Models. 2nd ed. London: Chapman & Hall; 1989.CrossRef McCullagh P, Nelder JA. Generalized Linear Models. 2nd ed. London: Chapman & Hall; 1989.CrossRef
18.
go back to reference Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med. 1998;17:1623–34.CrossRefPubMed Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med. 1998;17:1623–34.CrossRefPubMed
19.
go back to reference Novikov I, Fund N, Freedman LS. A modified approach to estimating sample size for simple logistic regression with one continuous covariate. Stat Med. 2010;29:97–107.PubMed Novikov I, Fund N, Freedman LS. A modified approach to estimating sample size for simple logistic regression with one continuous covariate. Stat Med. 2010;29:97–107.PubMed
20.
21.
go back to reference Boedker R, Akida J, Shayo D, Kisinza W, Msangeni HA, Pedersen EM, et al. Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania. J Med Entomol. 2003;40:706–17.CrossRef Boedker R, Akida J, Shayo D, Kisinza W, Msangeni HA, Pedersen EM, et al. Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania. J Med Entomol. 2003;40:706–17.CrossRef
23.
go back to reference Pires A, Amado C. Interval estimators for a Binomial proportion: comparison of twenty methods. Revstat. 2008;6:165–97. Pires A, Amado C. Interval estimators for a Binomial proportion: comparison of twenty methods. Revstat. 2008;6:165–97.
24.
go back to reference Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17:857–72.CrossRefPubMed Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17:857–72.CrossRefPubMed
25.
go back to reference Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378.CrossRefPubMedCentralPubMed Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378.CrossRefPubMedCentralPubMed
26.
go back to reference Wong J, Hamel MJ, Drakeley CJ, Kariuki S, Shi YP, Lal AA, et al. Serological markers for monitoring historical changes in malaria transmission intensity in a highly endemic region of Western Kenya, 1994–2009. Malar J. 2014;13:451.CrossRefPubMedCentralPubMed Wong J, Hamel MJ, Drakeley CJ, Kariuki S, Shi YP, Lal AA, et al. Serological markers for monitoring historical changes in malaria transmission intensity in a highly endemic region of Western Kenya, 1994–2009. Malar J. 2014;13:451.CrossRefPubMedCentralPubMed
27.
go back to reference Dendukuri N, Rahme E, Blisle P, Joseph L. Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test. Biometrics. 2004;60:388–97.CrossRefPubMed Dendukuri N, Rahme E, Blisle P, Joseph L. Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test. Biometrics. 2004;60:388–97.CrossRefPubMed
28.
go back to reference Santis FD. Using historical data for bayesian sample size determination. J R Statist Soc A. 2007;170:95–113.CrossRef Santis FD. Using historical data for bayesian sample size determination. J R Statist Soc A. 2007;170:95–113.CrossRef
29.
go back to reference Zeukeng F, Tchinda VHM, Bigoga JD, Seumen CHT, Ndzi ES, Abonweh G, et al. Co-infections of malaria and geohelminthiasis in two rural communities of Nkassomo and Vian in the Mfou health district, Cameroon. PLoS Negl Trop Dis. 2014;8:3236.CrossRef Zeukeng F, Tchinda VHM, Bigoga JD, Seumen CHT, Ndzi ES, Abonweh G, et al. Co-infections of malaria and geohelminthiasis in two rural communities of Nkassomo and Vian in the Mfou health district, Cameroon. PLoS Negl Trop Dis. 2014;8:3236.CrossRef
30.
go back to reference Bosman P, Stassijns J, Nackers F, Canier L, Kim N, Khim S, et al. Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear Province, Cambodia: a cross-sectional population-based study. Malar J. 2014;13:394.CrossRefPubMedCentralPubMed Bosman P, Stassijns J, Nackers F, Canier L, Kim N, Khim S, et al. Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear Province, Cambodia: a cross-sectional population-based study. Malar J. 2014;13:394.CrossRefPubMedCentralPubMed
31.
go back to reference Drakeley CJ, Akim NI, Sauerwein RW, Greenwood BM, Targett GA. Estimates of the infectious reservoir of Plasmodium falciparum malaria in the Gambia and in Tanzania. Trans R Soc Trop Med Hyg. 2000;94:472–6.CrossRefPubMed Drakeley CJ, Akim NI, Sauerwein RW, Greenwood BM, Targett GA. Estimates of the infectious reservoir of Plasmodium falciparum malaria in the Gambia and in Tanzania. Trans R Soc Trop Med Hyg. 2000;94:472–6.CrossRefPubMed
32.
go back to reference Maiga B, Dolo A, Tour O, Dara V, Tapily A, Campino S, et al. Human candidate polymorphisms in sympatric ethnic groups differing in malaria susceptibility in Mali. PLoS One. 2013;8:e75675.CrossRefPubMedCentralPubMed Maiga B, Dolo A, Tour O, Dara V, Tapily A, Campino S, et al. Human candidate polymorphisms in sympatric ethnic groups differing in malaria susceptibility in Mali. PLoS One. 2013;8:e75675.CrossRefPubMedCentralPubMed
33.
go back to reference Stevenson JC, Stresman GH, Gitonga CW, Gillig J, Owaga C, Marube E, et al. Reliability of school surveys in estimating geographic variation in malaria transmission in the Western Kenyan highlands. PLoS One. 2013;8:e77641.CrossRefPubMedCentralPubMed Stevenson JC, Stresman GH, Gitonga CW, Gillig J, Owaga C, Marube E, et al. Reliability of school surveys in estimating geographic variation in malaria transmission in the Western Kenyan highlands. PLoS One. 2013;8:e77641.CrossRefPubMedCentralPubMed
34.
go back to reference Cochran WG. Sampling Techniques. 3rd ed. New York: John Wiley & Sons; 1977. Cochran WG. Sampling Techniques. 3rd ed. New York: John Wiley & Sons; 1977.
35.
go back to reference Baum E, Badu K, Molina DM, Liang X, Felgner PL, Yan G. Protein microarray analysis of antibody responses to Plasmodium falciparum in western Kenyan highland sites with differing transmission levels. PLoS One. 2013;8:e82246.CrossRefPubMedCentralPubMed Baum E, Badu K, Molina DM, Liang X, Felgner PL, Yan G. Protein microarray analysis of antibody responses to Plasmodium falciparum in western Kenyan highland sites with differing transmission levels. PLoS One. 2013;8:e82246.CrossRefPubMedCentralPubMed
36.
go back to reference Ondigo BN, Hodges JS, Ireland KF, Magak NG, Lanar DE, Dutta S, et al. Estimation of recent and long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens. J Infect Dis. 2014;210:1123–32.CrossRefPubMed Ondigo BN, Hodges JS, Ireland KF, Magak NG, Lanar DE, Dutta S, et al. Estimation of recent and long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens. J Infect Dis. 2014;210:1123–32.CrossRefPubMed
Metadata
Title
Sample size determination for estimating antibody seroconversion rate under stable malaria transmission intensity
Authors
Nuno Sepúlveda
Chris Drakeley
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0661-z

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue