Skip to main content
Top
Published in: Malaria Journal 1/2013

Open Access 01-12-2013 | Research

Measurement of Plasmodium falciparum transmission intensity using serological cohort data from Indonesian schoolchildren

Authors: Michael T Bretscher, Supargiyono Supargiyono, Mahardika A Wijayanti, Dian Nugraheni, Anis N Widyastuti, Neil F Lobo, William A Hawley, Jackie Cook, Chris J Drakeley

Published in: Malaria Journal | Issue 1/2013

Login to get access

Abstract

Background

As malaria transmission intensity approaches zero, measuring it becomes progressively more difficult and inefficient because parasite-positive individuals are hard to detect. This situation may arise shortly before achieving local elimination, or during surveillance post-elimination to prevent reintroduction. Antibody responses against the parasite last longer than the infections themselves. This “footprint” of infection may thus be used for assessing transmission intensity. A statistical approach is presented for measuring the seroconversion rate (SCR), a correlate of the force of infection, from individual-level longitudinal data on antibody titres in an area of low Plasmodium falciparum transmission.

Methods

Blood samples were collected from 160 Indonesian schoolchildren every month for six months. Titres of antibodies against AMA-1 and MSP-119 antigens of P. falciparum were measured using ELISA. The distribution of antibody titres among seronegative and -positive individuals, respectively, was estimated by comparing the titres from the study data (a mixture of both seropositive and -negative individuals) with titres from a (unexposed) negative control group of Indonesian individuals. Two Markov-Chain models for the transition of individuals between serological states were fitted to individual anti-PfAMA-1 or anti-PfMSP-1 titre time series using Bayesian Markov-Chain-Monte-Carlo (MCMC). This yielded estimates of SCR as well as of the duration of seropositivity.

Results

A posterior median SCR of 0.02 (Pf AMA-1) and 0.09 (PfMSP-1) person-1 year-1 was estimated, with credible intervals ranging from 1E-4 to 0.2 person-1 year-1. This level of transmission intensity is at the lower range of what can reliably be measured with the present study size. A Bayesian test for seroconversion of an individual between two observations is presented and used to identify the subjects who have most likely experienced an infection. Furthermore, the theoretical limits of measuring transmission intensity, and how these depend on duration and size of a study as well as on transmission intensity itself, is illustrated.

Conclusions

This analysis shows that it is possible to measure SCR's from individual-level longitudinal data on antibody titres. In addition, individual seroconversion events can be identified, which can be useful in assessing interruption of transmission. Analyses of further serological datasets using the present method are required to improve and validate it. This includes measurement of the duration of antibody responses, how it depends on host age or cumulative exposure, or on the particular antigen used.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, Abeyasinghe RR, Rodriguez MH, Maharaj R, Tanner M, Targett G: Operational strategies to achieve and maintain malaria elimination. Lancet. 2010, 376: 1592-1603. 10.1016/S0140-6736(10)61269-X.PubMedCentralCrossRefPubMed Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, Abeyasinghe RR, Rodriguez MH, Maharaj R, Tanner M, Targett G: Operational strategies to achieve and maintain malaria elimination. Lancet. 2010, 376: 1592-1603. 10.1016/S0140-6736(10)61269-X.PubMedCentralCrossRefPubMed
2.
go back to reference Hay SI, Smith DL, Snow RW: Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis. 2008, 8: 369-378. 10.1016/S1473-3099(08)70069-0.PubMedCentralCrossRefPubMed Hay SI, Smith DL, Snow RW: Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis. 2008, 8: 369-378. 10.1016/S1473-3099(08)70069-0.PubMedCentralCrossRefPubMed
3.
go back to reference Draper CC, Voller A, Carpenter RG: The epidemiologic interpretation of serologic data in malaria. Am J Trop Med Hyg. 1972, 21: 696-703.PubMed Draper CC, Voller A, Carpenter RG: The epidemiologic interpretation of serologic data in malaria. Am J Trop Med Hyg. 1972, 21: 696-703.PubMed
4.
go back to reference Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, Carneiro I, Malima R, Lusingu J, Manjurano A, Nkya WMM, Lemnge MM, Cox J, Reyburn H, Riley EM: Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci USA. 2005, 102: 5108-5113. 10.1073/pnas.0408725102.PubMedCentralCrossRefPubMed Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, Carneiro I, Malima R, Lusingu J, Manjurano A, Nkya WMM, Lemnge MM, Cox J, Reyburn H, Riley EM: Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci USA. 2005, 102: 5108-5113. 10.1073/pnas.0408725102.PubMedCentralCrossRefPubMed
5.
go back to reference Kinyanjui SM, Conway DJ, Lanar DE, Marsh K: IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malar J. 2007, 6: 82-10.1186/1475-2875-6-82.PubMedCentralCrossRefPubMed Kinyanjui SM, Conway DJ, Lanar DE, Marsh K: IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malar J. 2007, 6: 82-10.1186/1475-2875-6-82.PubMedCentralCrossRefPubMed
6.
go back to reference Smith DL, Drakeley CJ, Chiyaka C, Hay SI: A quantitative analysis of transmission efficiency versus intensity for malaria. Nat Comm. 2010, 1: 108-10.1038/ncomms1107.CrossRef Smith DL, Drakeley CJ, Chiyaka C, Hay SI: A quantitative analysis of transmission efficiency versus intensity for malaria. Nat Comm. 2010, 1: 108-10.1038/ncomms1107.CrossRef
7.
go back to reference Muench H: Catalytic Models in Epidemiology. 1959, Cambridge: Harvard University PressCrossRef Muench H: Catalytic Models in Epidemiology. 1959, Cambridge: Harvard University PressCrossRef
8.
go back to reference Corran P, Coleman P, Riley E, Drakeley C: Serology: a robust indicator of malaria transmission intensity?. Trends Parasitol. 2007, 23: 575-582. 10.1016/j.pt.2007.08.023.CrossRefPubMed Corran P, Coleman P, Riley E, Drakeley C: Serology: a robust indicator of malaria transmission intensity?. Trends Parasitol. 2007, 23: 575-582. 10.1016/j.pt.2007.08.023.CrossRefPubMed
9.
go back to reference Vounatsou P, Smith T, Smith AFM: Bayesian analysis of two-component mixture distributions applied to estimating malaria attributable fractions. Appl Stat-J Roy St C. 1998, 47: 575-587.CrossRef Vounatsou P, Smith T, Smith AFM: Bayesian analysis of two-component mixture distributions applied to estimating malaria attributable fractions. Appl Stat-J Roy St C. 1998, 47: 575-587.CrossRef
10.
go back to reference Vounatsou P, Smith T, Kitua AY, Alonso PL, Tanner M: Apparent tolerance of Plasmodium falciparum in infants in a highly endemic area. Parasitology. 2000, 120 (Pt 1): 1-9.CrossRefPubMed Vounatsou P, Smith T, Kitua AY, Alonso PL, Tanner M: Apparent tolerance of Plasmodium falciparum in infants in a highly endemic area. Parasitology. 2000, 120 (Pt 1): 1-9.CrossRefPubMed
11.
go back to reference Corran PH, Cook J, Lynch C, Leendertse H, Manjurano A, Griffin J, Cox J, Abeku T, Bousema T, Ghani AC, Drakeley C, Riley E: Dried blood spots as a source of anti-malarial antibodies for epidemiological studies. Malar J. 2008, 7: 195-10.1186/1475-2875-7-195.PubMedCentralCrossRefPubMed Corran PH, Cook J, Lynch C, Leendertse H, Manjurano A, Griffin J, Cox J, Abeku T, Bousema T, Ghani AC, Drakeley C, Riley E: Dried blood spots as a source of anti-malarial antibodies for epidemiological studies. Malar J. 2008, 7: 195-10.1186/1475-2875-7-195.PubMedCentralCrossRefPubMed
12.
go back to reference Bousema T, Youssef RM, Cook J, Cox J, Alegana VA, Amran J, Noor AM, Snow RW, Drakeley C: Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008. Emerg Infect Dis. 2010, 16: 392-399. 10.3201/eid1603.090732.PubMedCentralCrossRefPubMed Bousema T, Youssef RM, Cook J, Cox J, Alegana VA, Amran J, Noor AM, Snow RW, Drakeley C: Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008. Emerg Infect Dis. 2010, 16: 392-399. 10.3201/eid1603.090732.PubMedCentralCrossRefPubMed
13.
go back to reference Irion A, Beck H-P, Smith T: Assessment of positivity in immuno-assays with variability in background measurements: a new approach applied to the antibody response to Plasmodium falciparum MSP2. J Immunol Meth. 2002, 259: 111-118. 10.1016/S0022-1759(01)00500-2.CrossRef Irion A, Beck H-P, Smith T: Assessment of positivity in immuno-assays with variability in background measurements: a new approach applied to the antibody response to Plasmodium falciparum MSP2. J Immunol Meth. 2002, 259: 111-118. 10.1016/S0022-1759(01)00500-2.CrossRef
14.
go back to reference Ye N: The Handbook of Data Mining. 2003, London: Routledge Ye N: The Handbook of Data Mining. 2003, London: Routledge
15.
go back to reference Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000, 10: 325-337. 10.1023/A:1008929526011.CrossRef Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000, 10: 325-337. 10.1023/A:1008929526011.CrossRef
17.
go back to reference Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A: Bayesian measures of model complexity and fit. J R Stat Soc Ser B. 2002, 64: 583-639. 10.1111/1467-9868.00353.CrossRef Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A: Bayesian measures of model complexity and fit. J R Stat Soc Ser B. 2002, 64: 583-639. 10.1111/1467-9868.00353.CrossRef
18.
go back to reference Plummer M: JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. 2003 Plummer M: JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. 2003
20.
go back to reference Okell LC, Ghani AC, Lyons E, Drakeley CJ: Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis. 2009, 200: 1509-1517. 10.1086/644781.CrossRefPubMed Okell LC, Ghani AC, Lyons E, Drakeley CJ: Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis. 2009, 200: 1509-1517. 10.1086/644781.CrossRefPubMed
21.
go back to reference Estévez P, Satoguina J, Nwakanma D, West S, Conway D, Drakeley C: Human saliva as a source of anti-malarial antibodies to examine population exposure to Plasmodium falciparum. Malar J. 2011, 10: 104-10.1186/1475-2875-10-104.PubMedCentralCrossRefPubMed Estévez P, Satoguina J, Nwakanma D, West S, Conway D, Drakeley C: Human saliva as a source of anti-malarial antibodies to examine population exposure to Plasmodium falciparum. Malar J. 2011, 10: 104-10.1186/1475-2875-10-104.PubMedCentralCrossRefPubMed
Metadata
Title
Measurement of Plasmodium falciparum transmission intensity using serological cohort data from Indonesian schoolchildren
Authors
Michael T Bretscher
Supargiyono Supargiyono
Mahardika A Wijayanti
Dian Nugraheni
Anis N Widyastuti
Neil F Lobo
William A Hawley
Jackie Cook
Chris J Drakeley
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2013
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-12-21

Other articles of this Issue 1/2013

Malaria Journal 1/2013 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.