Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Tyrosine Kinase Inhibitors | Review

Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment

Authors: Ruyin Chen, Qiong Li, Shuaishuai Xu, Chanqi Ye, Tian Tian, Qi Jiang, Jianzhen Shan, Jian Ruan

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treatments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenvironment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and is associated with tumour progression partially through the epithelial–mesenchymal transition. Specifically, the TME of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Administration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyroptosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated neutrophils, and induction of the epithelial–mesenchymal transition. In conclusion, the effect of TKIs on TME can enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, including combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
Appendix
Available only for authorised users
Literature
13.
go back to reference Dimova I, Popivanov G, Djonov V. Angiogenesis in cancer—general pathways and their therapeutic implications. Jbuon. 2014;19(1):15–21 (Epub 2014/03/25).PubMed Dimova I, Popivanov G, Djonov V. Angiogenesis in cancer—general pathways and their therapeutic implications. Jbuon. 2014;19(1):15–21 (Epub 2014/03/25).PubMed
22.
go back to reference Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 2020;10(9):2993–3036.PubMedPubMedCentral Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 2020;10(9):2993–3036.PubMedPubMedCentral
24.
go back to reference Pugh RN. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(23):2497–8.CrossRef Pugh RN. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(23):2497–8.CrossRef
33.
go back to reference Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61(5):1591–602. https://doi.org/10.1002/hep.27665 (Epub 2014/12/23).CrossRefPubMed Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61(5):1591–602. https://​doi.​org/​10.​1002/​hep.​27665 (Epub 2014/12/23).CrossRefPubMed
38.
go back to reference Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. IMbrave150: updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2021;39(3_suppl):267. https://doi.org/10.1200/JCO.2021.39.3_suppl.267.CrossRef Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. IMbrave150: updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2021;39(3_suppl):267. https://​doi.​org/​10.​1200/​JCO.​2021.​39.​3_​suppl.​267.CrossRef
53.
go back to reference Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Fürst D, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer. 2013;133(7):1557–66. https://doi.org/10.1002/ijc.28174.CrossRefPubMed Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Fürst D, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer. 2013;133(7):1557–66. https://​doi.​org/​10.​1002/​ijc.​28174.CrossRefPubMed
55.
go back to reference Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 2010;51(4):1264–73. https://doi.org/10.1002/hep.23456.CrossRefPubMed Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 2010;51(4):1264–73. https://​doi.​org/​10.​1002/​hep.​23456.CrossRefPubMed
56.
go back to reference Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 2010;51(4):1264–73. https://doi.org/10.1002/hep.23456 (Epub 2010/01/26).CrossRefPubMed Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 2010;51(4):1264–73. https://​doi.​org/​10.​1002/​hep.​23456 (Epub 2010/01/26).CrossRefPubMed
57.
go back to reference Sprinzl MF, Reisinger F, Puschnik A, Ringelhan M, Ackermann K, Hartmann D, et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology. 2013;57(6):2358–68. https://doi.org/10.1002/hep.26328 (Epub 2013/02/21).CrossRefPubMed Sprinzl MF, Reisinger F, Puschnik A, Ringelhan M, Ackermann K, Hartmann D, et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology. 2013;57(6):2358–68. https://​doi.​org/​10.​1002/​hep.​26328 (Epub 2013/02/21).CrossRefPubMed
58.
go back to reference Hage C, Hoves S, Strauss L, et al. Sorafenib induces pyroptosis in macrophages and triggers NK cell-mediated cytotoxicity against hepatocellular carcinoma. Hepatology. 2019;70(4):1280–97.CrossRefPubMed Hage C, Hoves S, Strauss L, et al. Sorafenib induces pyroptosis in macrophages and triggers NK cell-mediated cytotoxicity against hepatocellular carcinoma. Hepatology. 2019;70(4):1280–97.CrossRefPubMed
69.
go back to reference Zhang Z, Zhu Y, Xu D, Li TE, Li JH, Xiao ZT, et al. IFN-α facilitates the effect of sorafenib via shifting the M2-like polarization of TAM in hepatocellular carcinoma. Am J Transl Res. 2021;13(1):301–13 (Epub 2021/02/03).PubMedPubMedCentral Zhang Z, Zhu Y, Xu D, Li TE, Li JH, Xiao ZT, et al. IFN-α facilitates the effect of sorafenib via shifting the M2-like polarization of TAM in hepatocellular carcinoma. Am J Transl Res. 2021;13(1):301–13 (Epub 2021/02/03).PubMedPubMedCentral
79.
go back to reference Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology. 2014;59(4):1435–47. https://doi.org/10.1002/hep.26790 (Epub 2013/11/19).CrossRefPubMed Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology. 2014;59(4):1435–47. https://​doi.​org/​10.​1002/​hep.​26790 (Epub 2013/11/19).CrossRefPubMed
93.
go back to reference Chung CL, Wang SW, Sun WC, Shu CW, Kao YC, Shiao MS, et al. Sorafenib suppresses TGF-beta responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-beta receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma. Biochem Pharmacol. 2018;154:39–53. https://doi.org/10.1016/j.bcp.2018.04.014 (Epub 2018/04/22).CrossRefPubMed Chung CL, Wang SW, Sun WC, Shu CW, Kao YC, Shiao MS, et al. Sorafenib suppresses TGF-beta responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-beta receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma. Biochem Pharmacol. 2018;154:39–53. https://​doi.​org/​10.​1016/​j.​bcp.​2018.​04.​014 (Epub 2018/04/22).CrossRefPubMed
104.
go back to reference Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122(3):664–71. https://doi.org/10.1002/ijc.23131.CrossRefPubMed Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122(3):664–71. https://​doi.​org/​10.​1002/​ijc.​23131.CrossRefPubMed
105.
go back to reference Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14(17):5459–65. https://doi.org/10.1158/1078-0432.Ccr-07-5270 (Epub 2008/09/04).CrossRefPubMed Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14(17):5459–65. https://​doi.​org/​10.​1158/​1078-0432.​Ccr-07-5270 (Epub 2008/09/04).CrossRefPubMed
112.
go back to reference Kang Y-K, Boku N, Satoh T, Ryu M-H, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):2461–71. https://doi.org/10.1016/s0140-6736(17)31827-5.CrossRefPubMed Kang Y-K, Boku N, Satoh T, Ryu M-H, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):2461–71. https://​doi.​org/​10.​1016/​s0140-6736(17)31827-5.CrossRefPubMed
136.
go back to reference Tripathi M, Nandana S, Billet S, Posadas EM, Bhowmick NA. Abstract LB-274: microenvironment mediates the efficacy of cabozantinib in prostate cancer. Cancer Res. 2016;76(14 Supplement):LB-274. Tripathi M, Nandana S, Billet S, Posadas EM, Bhowmick NA. Abstract LB-274: microenvironment mediates the efficacy of cabozantinib in prostate cancer. Cancer Res. 2016;76(14 Supplement):LB-274.
Metadata
Title
Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment
Authors
Ruyin Chen
Qiong Li
Shuaishuai Xu
Chanqi Ye
Tian Tian
Qi Jiang
Jianzhen Shan
Jian Ruan
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02435-4

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine