Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Kidney Cancer | Primary research

Construction and validation of a ferroptosis-related long noncoding RNA signature in clear cell renal cell carcinoma

Authors: Zhenpeng Zhu, Cuijian Zhang, Jinqin Qian, Ninghan Feng, Weijie Zhu, Yang Wang, Yanqing Gong, Xuesong Li, Jian Lin, Liqun Zhou

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Clear cell renal cell carcinoma (ccRCC) is characterized by the accumulation of lipid-reactive oxygen species. Ferroptosis, due to the lipid peroxidation, has been reported to be strongly correlated with tumorigenesis and progression. However, the functions of the ferroptosis process in ccRCC remain unclear.

Methods

After sample cleaning, data integration, and batch effect removal, we used the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases to screen out the expression and prognostic value of ferroptosis-related lncRNAs and then performed the molecular subtyping using the K-means method. Then, the functional pathway enrichment and immune microenvironment infiltration between the different clusters were carried out. The results showed a significant difference in immune cell infiltration between the two clusters and the associated marker responded to individualized differences in treatment. Then, least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish a prognostic signature based on 5 lncRNAs. This signature could accurately predicted patient prognosis and served as an independent clinical risk factor. We then combined significant clinical parameters in multivariate Cox regression and the prognostic signature to construct a clinical predictive nomogram, which provides appropriate guidance for predicting the overall survival of ccRCC patients.

Results

The prognostic differentially expressed ferroptosis-related LncRNAs (DEFRlncRNAs) were found, and 5 lncRNAs were finally used to establish the prognostic signature in the TCGA cohort, with subsequently validation in the internal and external cohorts. Moreover, we conducted the molecular subtyping and divided the patients in the TCGA cohort into two clusters showing differences in Hallmark pathways, immune infiltration, immune target expression, and drug therapies. Differences between clusters contributed to individualizing treatment. Furthermore, a nomogram was established to better predict the clinical outcomes of the ccRCC patients.

Conclusions

Our study conducted molecular subtyping and established a novel predictive signature based on the ferroptosis-related lncRNAs, which contributed to the prognostic prediction and individualizing treatment of ccRCC patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.CrossRefPubMed Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.CrossRefPubMed
2.
go back to reference Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17(4):245–61.PubMedCrossRef Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17(4):245–61.PubMedCrossRef
3.
go back to reference Warren AY, Harrison D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: standards and controversies. World J Urol. 2018;36(12):1913–26.PubMedPubMedCentralCrossRef Warren AY, Harrison D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: standards and controversies. World J Urol. 2018;36(12):1913–26.PubMedPubMedCentralCrossRef
4.
5.
go back to reference Sanfrancesco JM, Cheng L. Complexity of the genomic landscape of renal cell carcinoma: Implications for targeted therapy and precision immuno-oncology. Crit Rev Oncol Hematol. 2017;119:23–8.PubMedCrossRef Sanfrancesco JM, Cheng L. Complexity of the genomic landscape of renal cell carcinoma: Implications for targeted therapy and precision immuno-oncology. Crit Rev Oncol Hematol. 2017;119:23–8.PubMedCrossRef
7.
go back to reference Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.PubMedCrossRef Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.PubMedCrossRef
8.
go back to reference Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12(1):34.PubMedPubMedCentralCrossRef Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12(1):34.PubMedPubMedCentralCrossRef
9.
go back to reference Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108.PubMedCrossRef Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108.PubMedCrossRef
10.
go back to reference Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31(51):e1904197.PubMedCrossRef Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31(51):e1904197.PubMedCrossRef
11.
go back to reference Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19(3):143–57.PubMedCrossRef Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19(3):143–57.PubMedCrossRef
12.
go back to reference Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78(13):3484–96.PubMedPubMedCentralCrossRef Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78(13):3484–96.PubMedPubMedCentralCrossRef
13.
go back to reference Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 2019;26(11):2329–43.PubMedPubMedCentralCrossRef Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 2019;26(11):2329–43.PubMedPubMedCentralCrossRef
14.
go back to reference Wang Z, Chen X, Liu N, Shi Y, Liu Y, Ouyang L, et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol Ther. 2021;29(1):263–74.PubMedCrossRef Wang Z, Chen X, Liu N, Shi Y, Liu Y, Ouyang L, et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol Ther. 2021;29(1):263–74.PubMedCrossRef
15.
go back to reference Zhu L, Yang F, Wang L, Dong L, Huang Z, Wang G, et al. Identification the ferroptosis-related gene signature in patients with esophageal adenocarcinoma. Cancer Cell Int. 2021;21(1):124.PubMedPubMedCentralCrossRef Zhu L, Yang F, Wang L, Dong L, Huang Z, Wang G, et al. Identification the ferroptosis-related gene signature in patients with esophageal adenocarcinoma. Cancer Cell Int. 2021;21(1):124.PubMedPubMedCentralCrossRef
16.
go back to reference Hassannia B, Vandenabeele P, Vanden BT. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35(6):830–49.PubMedCrossRef Hassannia B, Vandenabeele P, Vanden BT. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35(6):830–49.PubMedCrossRef
17.
go back to reference Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.PubMedCrossRef Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.PubMedCrossRef
18.
go back to reference Greenberg SA, Sanoudou D, Haslett JN, Kohane IS, Kunkel LM, Beggs AH, et al. Molecular profiles of inflammatory myopathies. Neurology. 2002;59(8):1170–82.PubMedCrossRef Greenberg SA, Sanoudou D, Haslett JN, Kohane IS, Kunkel LM, Beggs AH, et al. Molecular profiles of inflammatory myopathies. Neurology. 2002;59(8):1170–82.PubMedCrossRef
19.
go back to reference Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–3.PubMedPubMedCentralCrossRef Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–3.PubMedPubMedCentralCrossRef
22.
go back to reference Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15(3):R47.PubMedPubMedCentralCrossRef Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15(3):R47.PubMedPubMedCentralCrossRef
23.
go back to reference Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.PubMedCrossRef Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.PubMedCrossRef
24.
go back to reference Hackl H, Charoentong P, Finotello F, Trajanoski Z. Computational genomics tools for dissecting tumour-immune cell interactions. Nat Rev Genet. 2016;17(8):441–58.PubMedCrossRef Hackl H, Charoentong P, Finotello F, Trajanoski Z. Computational genomics tools for dissecting tumour-immune cell interactions. Nat Rev Genet. 2016;17(8):441–58.PubMedCrossRef
25.
go back to reference Hong W, Liang L, Gu Y, Qi Z, Qiu H, Yang X, et al. Immune-related lncRNA to construct novel signature and predict the immune landscape of human hepatocellular carcinoma. Mol Ther Nucleic Acids. 2020;22:937–47.PubMedPubMedCentralCrossRef Hong W, Liang L, Gu Y, Qi Z, Qiu H, Yang X, et al. Immune-related lncRNA to construct novel signature and predict the immune landscape of human hepatocellular carcinoma. Mol Ther Nucleic Acids. 2020;22:937–47.PubMedPubMedCentralCrossRef
26.
go back to reference Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26(8):1364–70.PubMedCrossRef Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26(8):1364–70.PubMedCrossRef
28.
go back to reference Nguyen CT, Campbell SC. Staging of renal cell carcinoma: past, present, and future. Clin Genitourin Cancer. 2006;5(3):190–7.PubMedCrossRef Nguyen CT, Campbell SC. Staging of renal cell carcinoma: past, present, and future. Clin Genitourin Cancer. 2006;5(3):190–7.PubMedCrossRef
29.
go back to reference Elkassem AA, Allen BC, Sharbidre KG, Rais-Bahrami S, Smith AD. Update on the role of imaging in clinical staging and restaging of renal cell carcinoma based on the AJCC 8th edition from the AJR special series on cancer staging. AJR Am J Roentgenol. 2021;217(3):541–55.PubMedCrossRef Elkassem AA, Allen BC, Sharbidre KG, Rais-Bahrami S, Smith AD. Update on the role of imaging in clinical staging and restaging of renal cell carcinoma based on the AJCC 8th edition from the AJR special series on cancer staging. AJR Am J Roentgenol. 2021;217(3):541–55.PubMedCrossRef
30.
go back to reference Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 2017;21(4):648–57.PubMedCrossRef Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 2017;21(4):648–57.PubMedCrossRef
31.
go back to reference Mou Y, Wu J, Zhang Y, Abdihamid O, Duan C, Li B. Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma. BMC Cancer. 2021;21(1):18.PubMedPubMedCentralCrossRef Mou Y, Wu J, Zhang Y, Abdihamid O, Duan C, Li B. Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma. BMC Cancer. 2021;21(1):18.PubMedPubMedCentralCrossRef
32.
go back to reference Wang J, Yin X, He W, Xue W, Zhang J, Huang Y. SUV39H1 deficiency suppresses clear cell renal cell carcinoma growth by inducing ferroptosis. Acta Pharm Sin B. 2021;11(2):406–19.PubMedCrossRef Wang J, Yin X, He W, Xue W, Zhang J, Huang Y. SUV39H1 deficiency suppresses clear cell renal cell carcinoma growth by inducing ferroptosis. Acta Pharm Sin B. 2021;11(2):406–19.PubMedCrossRef
33.
go back to reference Lu J, Xu F, Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 2020;260:118305.PubMedCrossRef Lu J, Xu F, Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 2020;260:118305.PubMedCrossRef
35.
go back to reference Zhong W, Zhang F, Huang C, Lin Y, Huang J. Identification of epithelial-mesenchymal transition-related lncRNA with prognosis and molecular subtypes in clear cell renal cell carcinoma. Front Oncol. 2020;10:591254.PubMedPubMedCentralCrossRef Zhong W, Zhang F, Huang C, Lin Y, Huang J. Identification of epithelial-mesenchymal transition-related lncRNA with prognosis and molecular subtypes in clear cell renal cell carcinoma. Front Oncol. 2020;10:591254.PubMedPubMedCentralCrossRef
36.
go back to reference Xiong Y, Wang Z, Zhou Q, Zeng H, Zhang H, Liu Z, et al. Identification and validation of dichotomous immune subtypes based on intratumoral immune cells infiltration in clear cell renal cell carcinoma patients. J Immunother Cancer. 2020;8(1):e000447.PubMedPubMedCentralCrossRef Xiong Y, Wang Z, Zhou Q, Zeng H, Zhang H, Liu Z, et al. Identification and validation of dichotomous immune subtypes based on intratumoral immune cells infiltration in clear cell renal cell carcinoma patients. J Immunother Cancer. 2020;8(1):e000447.PubMedPubMedCentralCrossRef
37.
go back to reference Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 2001;61(13):5132–6.PubMed Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 2001;61(13):5132–6.PubMed
38.
go back to reference Giraldo NA, Becht E, Pagès F, Skliris G, Verkarre V, Vano Y, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res. 2015;21(13):3031–40.PubMedCrossRef Giraldo NA, Becht E, Pagès F, Skliris G, Verkarre V, Vano Y, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res. 2015;21(13):3031–40.PubMedCrossRef
39.
go back to reference Yang H, Xiong X, Li H. Development and interpretation of a genomic instability derived lncRNAs based risk signature as a predictor of prognosis for clear cell renal cell carcinoma patients. Front Oncol. 2021;11:678253.PubMedPubMedCentralCrossRef Yang H, Xiong X, Li H. Development and interpretation of a genomic instability derived lncRNAs based risk signature as a predictor of prognosis for clear cell renal cell carcinoma patients. Front Oncol. 2021;11:678253.PubMedPubMedCentralCrossRef
40.
go back to reference Wang Y, Yan K, Wang L, Bi J. Genome instability-related long non-coding RNA in clear renal cell carcinoma determined using computational biology. BMC Cancer. 2021;21(1):727.PubMedPubMedCentralCrossRef Wang Y, Yan K, Wang L, Bi J. Genome instability-related long non-coding RNA in clear renal cell carcinoma determined using computational biology. BMC Cancer. 2021;21(1):727.PubMedPubMedCentralCrossRef
41.
go back to reference Zhang S, Zhang F, Niu Y, Yu S. Aberration of lncRNA LINC00460 is a promising prognosis factor and associated with progression of clear cell renal cell carcinoma. Cancer Manag Res. 2021;13:6489–97.PubMedPubMedCentralCrossRef Zhang S, Zhang F, Niu Y, Yu S. Aberration of lncRNA LINC00460 is a promising prognosis factor and associated with progression of clear cell renal cell carcinoma. Cancer Manag Res. 2021;13:6489–97.PubMedPubMedCentralCrossRef
42.
go back to reference Meng D-F, Shao H, Feng C-B. LINC00894 enhances the progression of breast cancer by sponging miR-429 to regulate ZEB1 expression. Onco Targets Ther. 2021;14:3395–407.PubMedPubMedCentralCrossRef Meng D-F, Shao H, Feng C-B. LINC00894 enhances the progression of breast cancer by sponging miR-429 to regulate ZEB1 expression. Onco Targets Ther. 2021;14:3395–407.PubMedPubMedCentralCrossRef
43.
go back to reference Zhu H, Shan Y, Ge K, Lu J, Kong W, Jia C. LncRNA CYTOR promotes pancreatic cancer cell proliferation and migration by sponging miR-205-5p. Pancreatology. 2020;20(6):1139–48.PubMedCrossRef Zhu H, Shan Y, Ge K, Lu J, Kong W, Jia C. LncRNA CYTOR promotes pancreatic cancer cell proliferation and migration by sponging miR-205-5p. Pancreatology. 2020;20(6):1139–48.PubMedCrossRef
44.
go back to reference Hu B, Yang X-B, Yang X, Sang X-T. LncRNA CYTOR affects the proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-125b-5p/KIAA1522 axis. Aging (Albany NY). 2020;13(2):2626–39.CrossRef Hu B, Yang X-B, Yang X, Sang X-T. LncRNA CYTOR affects the proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-125b-5p/KIAA1522 axis. Aging (Albany NY). 2020;13(2):2626–39.CrossRef
45.
go back to reference Liu H, Zhang X, Jin X, Yang Y, Liang G, Ma Y, et al. Long noncoding RNA VPS9D1-AS1 sequesters microRNA-525-5p to promote the oncogenicity of colorectal cancer cells by upregulating HMGA1. Cancer Manag Res. 2020;12:9915–28.PubMedPubMedCentralCrossRef Liu H, Zhang X, Jin X, Yang Y, Liang G, Ma Y, et al. Long noncoding RNA VPS9D1-AS1 sequesters microRNA-525-5p to promote the oncogenicity of colorectal cancer cells by upregulating HMGA1. Cancer Manag Res. 2020;12:9915–28.PubMedPubMedCentralCrossRef
46.
go back to reference Liang X, Chen Z, Wu G. FOXD2-AS1 predicts dismal prognosis for oral squamous cell carcinoma and regulates cell proliferation. Cell Transplant. 2020;29:963689720964411.PubMed Liang X, Chen Z, Wu G. FOXD2-AS1 predicts dismal prognosis for oral squamous cell carcinoma and regulates cell proliferation. Cell Transplant. 2020;29:963689720964411.PubMed
47.
go back to reference Xue W, Shen Z, Li L, Zheng Y, Yan D, Kan Q, et al. Long non-coding RNAs MACC1-AS1 and FOXD2-AS1 mediate NSD2-induced cisplatin resistance in esophageal squamous cell carcinoma. Mol Ther Nucleic Acids. 2021;23:592–602.PubMedCrossRef Xue W, Shen Z, Li L, Zheng Y, Yan D, Kan Q, et al. Long non-coding RNAs MACC1-AS1 and FOXD2-AS1 mediate NSD2-induced cisplatin resistance in esophageal squamous cell carcinoma. Mol Ther Nucleic Acids. 2021;23:592–602.PubMedCrossRef
Metadata
Title
Construction and validation of a ferroptosis-related long noncoding RNA signature in clear cell renal cell carcinoma
Authors
Zhenpeng Zhu
Cuijian Zhang
Jinqin Qian
Ninghan Feng
Weijie Zhu
Yang Wang
Yanqing Gong
Xuesong Li
Jian Lin
Liqun Zhou
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02700-0

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine