Skip to main content
Top
Published in: Cancer Cell International 1/2016

Open Access 01-12-2016 | Primary research

The chimeric multi-domain proteins mediating specific DNA transfer for hepatocellular carcinoma treatment

Authors: Encheng Yang, Xiao Li, Ningyi Jin

Published in: Cancer Cell International | Issue 1/2016

Login to get access

Abstract

Aim

This study was aimed to evaluate the therapeutic efficiency of a non-virus based specific chimeric multi-domain DNA transferred with apoptin in human hepatocellular carcinoma (HCC) HepG-2 cells in vitro and in mice H22 cells in vivo.

Methods

We firstly constructed the multi-domain recombinant chimeric proteins based on recombinant proteins [G (yeast GAL4), NG (none GAL4), TG (GAL4 + Tat protein) and TNG (Tat protein)] and pUAS-Apoptin plasmid, and transfected them into human HepG-2 cells. The antitumor effect of this multi-domain recombinant chimeric proteins to HCC cells were detected by MTT assay, AO/EB staining, DAPI staining and Annexin V assay. In order to find the pathway of cell apoptosis, the Caspase (1, 3, 6 and 8) activity was detected. We then constructed the H22 liver cancer mice model and analyzed the anti-tumor rate and mice survival rate after treated with G/pUAS-Apoptin NG/pUAS-Apoptin TG/pUAS-Apoptin, and TNG/pUAS-Apoptin.

Results

MTT results showed that the Tat protein (TG and TNG) significantly induced cell death in a time dependent manner. AO/EB, DAPI, Annexin V and Caspases assay results indicated that the Caspase 1, 3, 6 and 8 were highly expressed in TG/pUAS-Apoptin, and TNG/pUAS-Apoptin treated mouse groups. The antitumor rate and survival rate in TG/pUAS-Apoptin, and TNG/pUAS-Apoptin treated mouse groups were higher than in the other groups.

Conclusion

The Tat-apoptin is a potential anti-tumor agent for HCC treatment with remarkable anti-tumor efficacy and high safety based on non-virus gene transfer system. The anti-tumor function may be associated with high expression of Caspase 1, 3, 6 and 8.
Appendix
Available only for authorised users
Literature
1.
go back to reference Galun D, Basaric D, Zuvela M, Bulajic P, Bogdanovic A, Bidzic N, Milicevic M. Hepatocellular carcinoma: from clinical practice to evidence-based treatment protocols. World J Hepatol. 2015;7(20):2274–91.CrossRefPubMedPubMedCentral Galun D, Basaric D, Zuvela M, Bulajic P, Bogdanovic A, Bidzic N, Milicevic M. Hepatocellular carcinoma: from clinical practice to evidence-based treatment protocols. World J Hepatol. 2015;7(20):2274–91.CrossRefPubMedPubMedCentral
2.
go back to reference Saran U, Humar B, Kolly P, Dufour JF. Hepatocellular carcinoma and lifestyles. J Hepatol. 2015;1(15):00600–5. Saran U, Humar B, Kolly P, Dufour JF. Hepatocellular carcinoma and lifestyles. J Hepatol. 2015;1(15):00600–5.
3.
go back to reference Khan FZ, Perumpail RB, Wong RJ, Ahmed A. Advances in hepatocellular carcinoma: nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J Hepatol. 2015;7(18):2155–61.CrossRefPubMedPubMedCentral Khan FZ, Perumpail RB, Wong RJ, Ahmed A. Advances in hepatocellular carcinoma: nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J Hepatol. 2015;7(18):2155–61.CrossRefPubMedPubMedCentral
4.
go back to reference Mancuso A, Perricone G. Hepatocellular carcinoma and liver transplantation: state of the art. J Clin Transl Hepatol. 2014;2(3):176–81.PubMedPubMedCentral Mancuso A, Perricone G. Hepatocellular carcinoma and liver transplantation: state of the art. J Clin Transl Hepatol. 2014;2(3):176–81.PubMedPubMedCentral
6.
go back to reference Mínguez B, Tovar V, Chiang D, Villanueva A, Llovet JM. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol. 2009;25(3):186–94.CrossRefPubMed Mínguez B, Tovar V, Chiang D, Villanueva A, Llovet JM. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol. 2009;25(3):186–94.CrossRefPubMed
7.
go back to reference Mazzola A, Costantino A, Petta S, Bartolotta TV, Raineri M, Sacco R, Brancatelli G, Camma C, Cabibbo G. Recurrence of hepatocellular carcinoma after liver transplantation: an update. Future Oncol. 2015;28:28. Mazzola A, Costantino A, Petta S, Bartolotta TV, Raineri M, Sacco R, Brancatelli G, Camma C, Cabibbo G. Recurrence of hepatocellular carcinoma after liver transplantation: an update. Future Oncol. 2015;28:28.
8.
go back to reference Tsuchiya N, Sawada Y, Endo I, Uemura Y, Nakatsura T. Potentiality of immunotherapy against hepatocellular carcinoma. World J Gastroenterol. 2015;21(36):10314–26.CrossRefPubMedPubMedCentral Tsuchiya N, Sawada Y, Endo I, Uemura Y, Nakatsura T. Potentiality of immunotherapy against hepatocellular carcinoma. World J Gastroenterol. 2015;21(36):10314–26.CrossRefPubMedPubMedCentral
9.
go back to reference Liu H, Wei Q, Wang J, Huang X, Li C, Zheng Q, Cao J, Jia Z. DNA polymerases as targets for gene therapy of hepatocellular carcinoma. BMC Cancer. 2015;15(325):015–1339. Liu H, Wei Q, Wang J, Huang X, Li C, Zheng Q, Cao J, Jia Z. DNA polymerases as targets for gene therapy of hepatocellular carcinoma. BMC Cancer. 2015;15(325):015–1339.
10.
go back to reference Yao M, Wang L, Dong Z, Qian Q, Shi Y, Yu D, Wang S, Zheng W, Yao D. Glypican-3 as an emerging molecular target for hepatocellular carcinoma gene therapy. Tumour Biol. 2014;35(6):5857–68.CrossRefPubMed Yao M, Wang L, Dong Z, Qian Q, Shi Y, Yu D, Wang S, Zheng W, Yao D. Glypican-3 as an emerging molecular target for hepatocellular carcinoma gene therapy. Tumour Biol. 2014;35(6):5857–68.CrossRefPubMed
12.
go back to reference Sun H, Wu X. Current status and prospects of non-viral vector in inner ear gene therapy. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013;27(23):1339–42.PubMed Sun H, Wu X. Current status and prospects of non-viral vector in inner ear gene therapy. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013;27(23):1339–42.PubMed
13.
go back to reference Severino P, Szymanski M, Favaro M, Azzoni AR, Chaud MV, Santana MH, Silva AM, Souto EB. Development and characterization of a cationic lipid nanocarrier as non-viral vector for gene therapy. Eur J Pharm Sci. 2014;19:78–82. Severino P, Szymanski M, Favaro M, Azzoni AR, Chaud MV, Santana MH, Silva AM, Souto EB. Development and characterization of a cationic lipid nanocarrier as non-viral vector for gene therapy. Eur J Pharm Sci. 2014;19:78–82.
14.
go back to reference Pang SC, Wang HP, Zhu ZY, Sun YH. Transcriptional activity and DNA methylation dynamics of the Gal4/UAS system in zebrafish. Mar Biotechnol. 2015;17(5):593–603.CrossRefPubMed Pang SC, Wang HP, Zhu ZY, Sun YH. Transcriptional activity and DNA methylation dynamics of the Gal4/UAS system in zebrafish. Mar Biotechnol. 2015;17(5):593–603.CrossRefPubMed
15.
go back to reference Chan CK, Hübner S, Hu W, Jans DA. Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery. Gene Ther. 1998;5(9):1204–12.CrossRefPubMed Chan CK, Hübner S, Hu W, Jans DA. Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery. Gene Ther. 1998;5(9):1204–12.CrossRefPubMed
16.
go back to reference Ziemienowicz A, Rossi L. Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc Natl Acad Sci. 1999;96(7):3729–33.CrossRefPubMedPubMedCentral Ziemienowicz A, Rossi L. Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc Natl Acad Sci. 1999;96(7):3729–33.CrossRefPubMedPubMedCentral
17.
go back to reference Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272(25):16010–7.CrossRefPubMed Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272(25):16010–7.CrossRefPubMed
18.
go back to reference Gao P, Li X, Liu Y, Liu Y, Kan S, Jin J, Wang S, Yuan C, Jin N. Construction, expression and characterization of a chimeric multi-domain protein mediating specific DNA transfer. Protein Expr Purif. 2010;74(2):189–95.CrossRefPubMed Gao P, Li X, Liu Y, Liu Y, Kan S, Jin J, Wang S, Yuan C, Jin N. Construction, expression and characterization of a chimeric multi-domain protein mediating specific DNA transfer. Protein Expr Purif. 2010;74(2):189–95.CrossRefPubMed
19.
go back to reference Olijslagers SJ, Zhang YH, Backendorf C, Noteborn MH. Additive cytotoxic effect of apoptin and chemotherapeutic agents paclitaxel and etoposide on human tumour cells. Basic Clin Pharmacol Toxicol. 2007;100(2):127–31.PubMed Olijslagers SJ, Zhang YH, Backendorf C, Noteborn MH. Additive cytotoxic effect of apoptin and chemotherapeutic agents paclitaxel and etoposide on human tumour cells. Basic Clin Pharmacol Toxicol. 2007;100(2):127–31.PubMed
20.
go back to reference Yuan L, Zhang L, Dong X, Zhao H, Li S, Han D, Liu X. Apoptin selectively induces the apoptosis of tumor cells by suppressing the transcription of HSP70. Tumor Biol. 2013;34(1):577–85.CrossRef Yuan L, Zhang L, Dong X, Zhao H, Li S, Han D, Liu X. Apoptin selectively induces the apoptosis of tumor cells by suppressing the transcription of HSP70. Tumor Biol. 2013;34(1):577–85.CrossRef
21.
go back to reference Zimmerman R, Peng D, Lanz H, Zhang Y, Danen-van Oorschot A, Qu S, Backendorf C, Noteborn M. PP2A inactivation is a crucial step in triggering apoptin-induced tumor-selective cell killing. Cell Death Dis. 2012;3(4):e291.CrossRefPubMedPubMedCentral Zimmerman R, Peng D, Lanz H, Zhang Y, Danen-van Oorschot A, Qu S, Backendorf C, Noteborn M. PP2A inactivation is a crucial step in triggering apoptin-induced tumor-selective cell killing. Cell Death Dis. 2012;3(4):e291.CrossRefPubMedPubMedCentral
22.
go back to reference Los M, Panigrahi S, Rashedi I, Mandal S, Stetefeld J, Essmann F, Schulze-Osthoff K. Apoptin, a tumor-selective killer. Biochim Biophys Acta. 2009;8(42):15. Los M, Panigrahi S, Rashedi I, Mandal S, Stetefeld J, Essmann F, Schulze-Osthoff K. Apoptin, a tumor-selective killer. Biochim Biophys Acta. 2009;8(42):15.
23.
go back to reference Pietersen AM, van der Eb MM, Rademaker HJ, van den Wollenberg DJ, Rabelink MJ, Kuppen PJ, van Dierendonck JH, van Ormondt H, Masman D, van de Velde CJ, et al. Specific tumor-cell killing with adenovirus vectors containing the apoptin gene. Gene Ther. 1999;6(5):882–92.CrossRefPubMed Pietersen AM, van der Eb MM, Rademaker HJ, van den Wollenberg DJ, Rabelink MJ, Kuppen PJ, van Dierendonck JH, van Ormondt H, Masman D, van de Velde CJ, et al. Specific tumor-cell killing with adenovirus vectors containing the apoptin gene. Gene Ther. 1999;6(5):882–92.CrossRefPubMed
24.
go back to reference Danen-Van Oorschot A, Fischer D, Grimbergen JE, Klein B, Zhuang S-M, Falkenburg J, Backendorf C, Quax P, Van der Eb A, Noteborn M. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci. 1997;94(11):5843–7.CrossRefPubMed Danen-Van Oorschot A, Fischer D, Grimbergen JE, Klein B, Zhuang S-M, Falkenburg J, Backendorf C, Quax P, Van der Eb A, Noteborn M. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci. 1997;94(11):5843–7.CrossRefPubMed
25.
go back to reference Backendorf C, Visser AE, De Boer A, Zimmerman R, Visser M, Voskamp P, Zhang Y-H, Noteborn M. Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu Rev Pharmacol Toxicol. 2008;48:143–69.CrossRefPubMed Backendorf C, Visser AE, De Boer A, Zimmerman R, Visser M, Voskamp P, Zhang Y-H, Noteborn M. Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu Rev Pharmacol Toxicol. 2008;48:143–69.CrossRefPubMed
27.
go back to reference Maddika S, Booy EP, Johar D, Gibson SB, Ghavami S, Los M. Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci. 2005;118(19):4485–93.CrossRefPubMed Maddika S, Booy EP, Johar D, Gibson SB, Ghavami S, Los M. Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci. 2005;118(19):4485–93.CrossRefPubMed
28.
go back to reference Danen-van Oorschot AA, van Der Eb AJ, Noteborn MH. The chicken anemia virus-derived protein apoptin requires activation of caspases for induction of apoptosis in human tumor cells. J Virol. 2000;74(15):7072–8.CrossRefPubMedPubMedCentral Danen-van Oorschot AA, van Der Eb AJ, Noteborn MH. The chicken anemia virus-derived protein apoptin requires activation of caspases for induction of apoptosis in human tumor cells. J Virol. 2000;74(15):7072–8.CrossRefPubMedPubMedCentral
29.
go back to reference Burek M, Maddika S, Burek CJ, Daniel PT, Schulze-Osthoff K, Los M. Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene. 2006;25(15):2213–22.CrossRefPubMedPubMedCentral Burek M, Maddika S, Burek CJ, Daniel PT, Schulze-Osthoff K, Los M. Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene. 2006;25(15):2213–22.CrossRefPubMedPubMedCentral
30.
go back to reference Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002;419(6907):634–7.CrossRefPubMed Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002;419(6907):634–7.CrossRefPubMed
31.
go back to reference An S, Nam K, Choi S, Bai CZ, Lee Y, Park JS. Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor therapeutic. Int J Nanomedicine. 2013;8:821–34.PubMedPubMedCentral An S, Nam K, Choi S, Bai CZ, Lee Y, Park JS. Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor therapeutic. Int J Nanomedicine. 2013;8:821–34.PubMedPubMedCentral
32.
go back to reference Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189–93.CrossRefPubMed Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189–93.CrossRefPubMed
33.
go back to reference Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B. HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell. 2004;15(5):2347–60.CrossRefPubMedPubMedCentral Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B. HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell. 2004;15(5):2347–60.CrossRefPubMedPubMedCentral
34.
go back to reference Efthymiadis A, Briggs LJ, Jans DA. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem. 1998;273(3):1623–8.CrossRefPubMed Efthymiadis A, Briggs LJ, Jans DA. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem. 1998;273(3):1623–8.CrossRefPubMed
35.
go back to reference Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57(4):637–51.CrossRefPubMed Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57(4):637–51.CrossRefPubMed
36.
go back to reference Orsini MJ, Debouck CM. Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol. 1996;70(11):8055–63.PubMedPubMedCentral Orsini MJ, Debouck CM. Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol. 1996;70(11):8055–63.PubMedPubMedCentral
37.
38.
go back to reference Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine W, Rosen C. Structural and functional characterization of human immunodeficiency virus tat protein. J Virol. 1989;63(1):1–8.PubMedPubMedCentral Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine W, Rosen C. Structural and functional characterization of human immunodeficiency virus tat protein. J Virol. 1989;63(1):1–8.PubMedPubMedCentral
39.
go back to reference Guelen L, Paterson H, Gäken J, Meyers M, Farzaneh F, Tavassoli M. TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene. 2004;23(5):1153–65.CrossRefPubMed Guelen L, Paterson H, Gäken J, Meyers M, Farzaneh F, Tavassoli M. TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene. 2004;23(5):1153–65.CrossRefPubMed
40.
go back to reference Ortiz R, Melguizo C, Prados J, Alvarez PJ, Caba O, Rodriguez-Serrano F, Hita F, Aranega A. New gene therapy strategies for cancer treatment: a review of recent patents. Recent Pat Anticancer Drug Discov. 2012;7(3):297–312.CrossRefPubMed Ortiz R, Melguizo C, Prados J, Alvarez PJ, Caba O, Rodriguez-Serrano F, Hita F, Aranega A. New gene therapy strategies for cancer treatment: a review of recent patents. Recent Pat Anticancer Drug Discov. 2012;7(3):297–312.CrossRefPubMed
41.
go back to reference Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12(5):341–55.CrossRefPubMed Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12(5):341–55.CrossRefPubMed
42.
go back to reference Scala G, Ruocco MR, Ambrosino C, Mallardo M, Giordano V, Baldassarre F, Dragonetti E, Quinto I, Venuta S. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med. 1994;179(3):961–71.CrossRefPubMed Scala G, Ruocco MR, Ambrosino C, Mallardo M, Giordano V, Baldassarre F, Dragonetti E, Quinto I, Venuta S. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med. 1994;179(3):961–71.CrossRefPubMed
43.
go back to reference Ma J-L, Han S-X, Zhao J, Zhang D, Wang L, Li Y-D, Zhu Q. Systemic delivery of lentivirus-mediated secretable TAT-apoptin eradicates hepatocellular carcinoma xenografts in nude mice. Int J Oncol. 2012;41(3):1013–20.PubMed Ma J-L, Han S-X, Zhao J, Zhang D, Wang L, Li Y-D, Zhu Q. Systemic delivery of lentivirus-mediated secretable TAT-apoptin eradicates hepatocellular carcinoma xenografts in nude mice. Int J Oncol. 2012;41(3):1013–20.PubMed
Metadata
Title
The chimeric multi-domain proteins mediating specific DNA transfer for hepatocellular carcinoma treatment
Authors
Encheng Yang
Xiao Li
Ningyi Jin
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2016
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-016-0351-0

Other articles of this Issue 1/2016

Cancer Cell International 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine