Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Specific tumor-cell killing with adenovirus vectors containing the apoptin gene

Abstract

Specificity is an essential prerequisite for cancer gene therapy. Recently we described that apoptin, a protein of 121 amino acids which is derived from the chicken anemia virus, induces programmed cell death or apoptosis in transformed and malignant cells, but not in normal, diploid cells (Danen-van Oorschot AAAM et al, Proc Natl Acad Sci USA 1997; 94: 5843–5847). This protein has an intrinsic specificity that allows it to selectively kill tumor cells, irrespective of the p53 or Bcl-2 status of these cells. Hence, it is attractive to explore the use of the apoptin gene for therapeutic applications, viz cancer gene therapy. In this paper, we describe the generation and characterization of an adenovirus vector, AdMLPvp3, for the expression of apoptin. Despite the fact that apoptin ultimately induces apoptosis in the helper cells, which are transformed by the adenovirus type 5 early region 1 (E1), the propagation kinetics and yields of AdMLPvp3 are similar to those of control vec- tors. Infection with AdMLPvp3 of normal rat hepatocytes in cell culture did not increase the frequency of apoptosis. In contrast, in the hepatoma cell lines HepG2 and Hep3b, infection with AdMLPvp3, but not with control vectors, led to a rapid induction of programmed cell death. Experiments in rats demonstrated that AdMLPvp3 could be safely administered by intraperitoneal, subcutaneous or intravenous injection. Repeated intravenous doses of AdMLPvp3 were also well tolerated, indicating that the apoptin-expressing virus can be administered without severe adverse effects. In a preliminary experiment, a single intratumoral injection of AdMLPvp3 into a xenogeneic tumor (HepG2 cells in Balb/Cnu/nu mice) resulted in a significant reduction of tumor growth. Taken together, our data demonstrate that adenovirus vectors for the expression of the apoptin gene may constitute a powerful tool for the treatment of solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Noteborn MHM et al. A single chicken anemia virus protein induces apoptosis J Virol 1994 68: 346–351

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhuang S-M et al. Apoptin, a protein derived from chicken anemia virus, induces p53-independent apoptosis in human osteosarcoma cells Cancer Res 1995 55: 486–489

    CAS  PubMed  Google Scholar 

  3. Danen-Van Oorschot AAAM et al. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells Proc Natl Acad Sci USA 1997 94: 5843–5847

    Article  CAS  PubMed  Google Scholar 

  4. Hockenberry DM . Bcl-2 in cancer, development and apoptosis J Cell Sci 1994 18 (Suppl.): 51–55

    Article  Google Scholar 

  5. Levine AJ et al. The 1993 Walter Hubert Lecture: the role of the p53 tumour-suppressor gene in tumorigenesis Br J Cancer 1994 69: 409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lowe SW et al. P53 status and the efficacy of cancer therapy in vivo Science 1994 266: 807–810

    Article  CAS  PubMed  Google Scholar 

  7. Smith ML, Fornace AJ . Genomic instability and the role of p53 mutations in cancer cells Curr Opin Oncol 1995 7: 69–75

    Article  CAS  PubMed  Google Scholar 

  8. Wyllie AH . Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview Cancer Metast Rev 1992 11: 95–103

    Article  CAS  Google Scholar 

  9. Zhuang S-M et al. Apoptin, a protein encoded by chicken anemia virus, induces cell death in various human hematologic malignant cells in vitro Leukemia 1995 9 (Suppl.): 118–120

    Google Scholar 

  10. Danen-Van Oorschot AAAM et al. BAG-1 inhibits p53-induced but not apoptin-induced apoptosis Apoptosis 1997 2: 395–402

    Article  CAS  PubMed  Google Scholar 

  11. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–74

    Article  CAS  PubMed  Google Scholar 

  12. Fallaux FJ et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors Hum Gene Ther 1996 7: 215–222

    Article  CAS  PubMed  Google Scholar 

  13. Fallaux FJ et al. New helper cells and matched early-region-1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses Hum Gene Ther 1998 9: 1909–1917

    Article  CAS  PubMed  Google Scholar 

  14. Telford WG, King LE, Fraker PJ . Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry Cytometry 1992 13: 137–143

    Article  CAS  PubMed  Google Scholar 

  15. Toes RE et al. Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion Proc Natl Acad Sci USA 1997 94: 14660–14665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noteborn MHM, Koch G . Chicken anaemia virus infection: molecular basis of pathogenicity Avian Pathol 1995 24: 11–31

    Article  CAS  PubMed  Google Scholar 

  17. McGrory WJ, Bautista DS, Graham FL . A simple technique for the rescue of early region 1 mutations into infectious human adenovirus type 5 Virology 1988 163: 614–617

    Article  CAS  PubMed  Google Scholar 

  18. Huard J et al. The route of administration is a major determinant of transduction efficiency of rat tissues by adenoviral recombinants Gene Therapy 1995 2: 107–115

    CAS  PubMed  Google Scholar 

  19. Li Q et al. Assessment of recombinant adenoviral vectors for hepatic gene therapy Hum Gene Ther 1993 4: 403–409

    Article  CAS  PubMed  Google Scholar 

  20. Zhuang S-M et al. Differential sensitivity to Ad5 E1B-21kD and Bcl-2 proteins of apoptin-induced versus p53-induced apoptosis Carcinogenesis 1995 16: 2939–2944

    Article  CAS  PubMed  Google Scholar 

  21. White E . Life, death and the pursuit of apoptosis Genes Dev 1996 10: 1–15

    Article  CAS  PubMed  Google Scholar 

  22. Noteborn MHM, Danen-Van Oorschot AAAM, Van der Eb AJ . Chicken anemia virus: induction of apoptosis by a single-stranded DNA virus Semin Virol 1998 8: 497–504

    Article  CAS  Google Scholar 

  23. Nielsen LL, Maneval DC . P53 tumor suppressor gene therapy for cancer Cancer Gene Ther 1998 5: 52–63

    CAS  PubMed  Google Scholar 

  24. Spitz FR et al. In vivo adenovirus-mediated p53 tumor suppressor gene therapy for colorectal cancer Anticancer Res 1996 16: 3414–3422

    Google Scholar 

  25. Ko SC et al. Molecular therapy with recombinant p53 adenovirus in an androgen-independent, metastatic human prostate cancer model Hum Gene Ther 1996 7: 1683–1691

    Article  CAS  PubMed  Google Scholar 

  26. Soruri A et al. Specific autologous anti-melanoma T cell response in vitro using monocyte-derived dendritic cells Immunobiology 1998 198: 527–538

    Article  CAS  PubMed  Google Scholar 

  27. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ . Targeting gene therapy to cancer: a review Oncol Res 1997 9: 313–325

    CAS  PubMed  Google Scholar 

  28. Bui LA et al. In vivo therapy of hepatocellular carcinoma with a tumor-specific adenoviral vector expressing interleukin-2 Hum Gene Ther 1997 8: 2173–2182

    Article  CAS  PubMed  Google Scholar 

  29. Roth JA, Christiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997 89: 21–39

    Article  CAS  PubMed  Google Scholar 

  30. Moolten F . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  31. Van der Eb MM et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine-kinase gene and ganciclovir administration Gene Therapy 1998 5: 451–458

    Article  CAS  PubMed  Google Scholar 

  32. Brand K et al. Liver-associated toxicity of the HSV-tk/GCV approach and adenoviral vectors Cancer Gene Ther 1997 4: 9–16

    CAS  PubMed  Google Scholar 

  33. Hong-Ji X et al. Enhanced tumor suppressor gene therapy via replication-deficient adenovirus vectors expressing an N-terminal truncated retinoblastoma protein Cancer Res 1996 56: 2245–2249

    Google Scholar 

  34. Nielsen LL et al. Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts Cancer Gene Ther 1997 4: 129–138

    CAS  PubMed  Google Scholar 

  35. Polyak K et al. Genetic determinants of p53-induced apoptosis and growth arrest Genes Dev 1996 10: 1945–1952

    Article  CAS  PubMed  Google Scholar 

  36. Zhang WW et al. Safety evaluation of Ad5CMV-p53 in vitro and in vivo Hum Gene Ther 1995 6: 155–164

    Article  CAS  PubMed  Google Scholar 

  37. Roth JA et al. Retrovirus-mediated wild-type p53 gene transfer to tumor of patients with lung cancer Nature Med 1996 2: 985–991

    Article  CAS  PubMed  Google Scholar 

  38. Aden DP et al. Controlled synthesis of HbsAg in a differentiated human liver carcinoma-derived cell line Nature 1979 282: 615–616

    Article  CAS  PubMed  Google Scholar 

  39. Puisieux A et al. Retinoblatoma and p53 tumor suppressor genes in human hepatoma cell lines FASEB J 1993 7: 1407–1413

    Article  CAS  PubMed  Google Scholar 

  40. Menke AL et al. Wilms’ tumor 1-KTS isoforms induce p53-independent apoptosis that can be partially rescued by expression of the epidermal growth factor receptor or the insulin receptor Cancer Res 1997 57: 1353–1363

    CAS  PubMed  Google Scholar 

  41. Graham FL, Van der Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA Virology 1973 52: 456–467

    Article  CAS  PubMed  Google Scholar 

  42. Van den Heuvel SJL et al. Association between the cellular p53 and the adenovirus 5 E1B-55kD proteins reduces the oncogenicity of Ad-transformed cells EMBO J 1990 9: 2621–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Graham FL, Prevec L . Manipulation of adenovirus vectors. In: Murray EJ (ed). Methods in Molecular Biology, Vol 7. Gene Transfer and Expression Protocols Humana Press: Clifton, NJ, 1991, pp 109–128

  44. Sanes JR, Rubenstein JL, Nicolas JF . Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos EMBO J 1986 5: 3133–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gratzner HG . Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication Science 1982 218: 474–475

    Article  CAS  PubMed  Google Scholar 

  46. Southern EM . Detection of specific sequences among DNA fragments separated by gel electrophoresis J Mol Biol 1975 98: 503–517

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietersen, A., van der Eb, M., Rademaker, H. et al. Specific tumor-cell killing with adenovirus vectors containing the apoptin gene. Gene Ther 6, 882–892 (1999). https://doi.org/10.1038/sj.gt.3300876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300876

Keywords

This article is cited by

Search

Quick links