Skip to main content
Top
Published in: Cancer Cell International 1/2016

Open Access 01-12-2016 | Primary research

Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling pathway

Authors: Qian-Qian Liu, Ke Chen, Qiao Ye, Xiao-Hua Jiang, Yun-Wei Sun

Published in: Cancer Cell International | Issue 1/2016

Login to get access

Abstract

Background

Oridonin (ORI) can inhibit proliferation and migration in various types of cancer cell lines. However, the exact mechanism remains unclear. We investigated the migration inhibitory effect of ORI on human pancreatic cancer SW1990 cells and dissected the possible molecular mechanism(s).

Methods

CCK-8 assay was used to observe the cell viability. Wound healing assay, transwell assay and spontaneous metastasis model were used to observe the migration activities. Real-time PCR, immunofluorescence, western blot analysis and immunohistochemistry methods were used to observe the expression of genes or proteins.

Results

ORI inhibited the migration of SW1990 cells. Real-time PCR and immuno-fluorescence analyses of epithelial-to-mesenchymal transition (EMT) markers were compared between control group and ORI group. The expression of mesenchymal molecular markers, such as vimentin, snail and slug decreased. The expression of epithelial-related marker E-cadherin increased. Wnt/β-catenin signalling was inhibited by ORI using luciferase reporter assay. ORI can decrease the β-catenin protein level not only in the nucleus, but also in the cytoplasm and the whole cell after the treatment with ORI and glycogen synthase kinase 3β (GSK3β) was increased in the ORI-treated group. CHIR could attenuate the effects of ORI in SW1990 cells. We established a mice model by injecting 1 × 106 SW1990 cells into nude mice intraperitoneally to test whether ORI affects tumour metastasis. Metastatic formation was inhibited by ORI (5 and 10 mg/kg) compared with the control group. Tumour sections stained with anti-E-cadherin, anti-vimentin and anti-β-catenin antibodies revealed that ORI inhibited EMT, as well as the Wnt/β-catenin pathway in vivo.

Conclusions

ORI can inhibit pancreatic cancer cell SW1990 migration and EMT by down-regulating Wnt/β-catenin signal transduction in vitro and in vivo. Therefore, it can be potentially and effectively used in the clinical management of pancreatic cancer.
Literature
2.
3.
go back to reference Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed
4.
go back to reference Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMed Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMed
5.
go back to reference Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102(5):340–51.CrossRefPubMedPubMedCentral Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102(5):340–51.CrossRefPubMedPubMedCentral
6.
go back to reference Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674–9.CrossRefPubMedPubMedCentral Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674–9.CrossRefPubMedPubMedCentral
7.
go back to reference Yang MH, Chen CL, Chau GY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464–74.CrossRefPubMed Yang MH, Chen CL, Chau GY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464–74.CrossRefPubMed
8.
go back to reference Araki K, Shimura T, Suzuki H, et al. E/N-cadherin switch mediates cancer progression via TGF-beta-induced epithelial-to mesenchymal transition in extrahepatic cholangiocarcinoma. Br J Cancer. 2011;105(12):1885–93.CrossRefPubMedPubMedCentral Araki K, Shimura T, Suzuki H, et al. E/N-cadherin switch mediates cancer progression via TGF-beta-induced epithelial-to mesenchymal transition in extrahepatic cholangiocarcinoma. Br J Cancer. 2011;105(12):1885–93.CrossRefPubMedPubMedCentral
9.
go back to reference Sun HD, Huang SX, Han QB. Diterpenoids from Isodon species and their biological activities. Nat Prod Rep. 2006;23:673–98.CrossRefPubMed Sun HD, Huang SX, Han QB. Diterpenoids from Isodon species and their biological activities. Nat Prod Rep. 2006;23:673–98.CrossRefPubMed
10.
go back to reference Huang J, Wu L, Tashiro S, et al. Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK and mitochondrial signaling pathways. J Pharmacol Sci. 2008;107:370–9.CrossRefPubMed Huang J, Wu L, Tashiro S, et al. Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK and mitochondrial signaling pathways. J Pharmacol Sci. 2008;107:370–9.CrossRefPubMed
11.
go back to reference Cheng Y, Qiu F, Ye YC, et al. Oridonin induces G2/M arrest and apoptosis via activating ERK-p53 apoptotic pathway and inhibiting PTK-RAS-RAFJNK survival pathway in murine fibrosarcoma L929 cells. Arch Biochem Biophys. 2009;490:70–5.CrossRefPubMed Cheng Y, Qiu F, Ye YC, et al. Oridonin induces G2/M arrest and apoptosis via activating ERK-p53 apoptotic pathway and inhibiting PTK-RAS-RAFJNK survival pathway in murine fibrosarcoma L929 cells. Arch Biochem Biophys. 2009;490:70–5.CrossRefPubMed
12.
go back to reference Gao FH, Hu XH, Li W, et al. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer. 2010;10:610.CrossRefPubMedPubMedCentral Gao FH, Hu XH, Li W, et al. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer. 2010;10:610.CrossRefPubMedPubMedCentral
13.
go back to reference Kyriazis AP, McCombs WB 3rd, Sandberg AA, et al. Establishment and characterization of human pancreatic adenocarcinoma cell line SW-1990 in tissue culture and the nude mouse. Cancer Res. 1983;43(9):4393–401.PubMed Kyriazis AP, McCombs WB 3rd, Sandberg AA, et al. Establishment and characterization of human pancreatic adenocarcinoma cell line SW-1990 in tissue culture and the nude mouse. Cancer Res. 1983;43(9):4393–401.PubMed
14.
go back to reference Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.CrossRefPubMed Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.CrossRefPubMed
15.
go back to reference Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129:199–221.PubMed Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129:199–221.PubMed
16.
go back to reference Nakamura T, Hamada F, Ishidate T, et al. Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3 beta and APC and reduces the beta-catenin level. Genes Cells. 1998;3:395–403.CrossRefPubMed Nakamura T, Hamada F, Ishidate T, et al. Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3 beta and APC and reduces the beta-catenin level. Genes Cells. 1998;3:395–403.CrossRefPubMed
17.
go back to reference Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.CrossRefPubMed Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.CrossRefPubMed
18.
go back to reference Bikkavilli RK, Feigin ME, Malbon CC. p38 mitogen-activated protein kinase regulates canonical Wnt/beta-catenin signaling by inactivation of GSK3beta. J Cell Sci. 2008;121:3598–607.CrossRefPubMed Bikkavilli RK, Feigin ME, Malbon CC. p38 mitogen-activated protein kinase regulates canonical Wnt/beta-catenin signaling by inactivation of GSK3beta. J Cell Sci. 2008;121:3598–607.CrossRefPubMed
19.
go back to reference Guo Y, Shan Q, Gong Y, et al. Oridonin in combination with imatinib exerts synergetic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting activation of LYN/mTOR signaling pathway. Cancer Biol Ther. 2012;13:1244–54.CrossRefPubMedPubMedCentral Guo Y, Shan Q, Gong Y, et al. Oridonin in combination with imatinib exerts synergetic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting activation of LYN/mTOR signaling pathway. Cancer Biol Ther. 2012;13:1244–54.CrossRefPubMedPubMedCentral
20.
go back to reference Yang J, Jiang H, Wang C, et al. Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects. Biomed Pharmacother. 2015;72:125–34.CrossRefPubMed Yang J, Jiang H, Wang C, et al. Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects. Biomed Pharmacother. 2015;72:125–34.CrossRefPubMed
21.
go back to reference Xu B, Shen W, Liu X, et al. Oridonin inhibits BxPC-3 cell growth through cell apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47:164–73.CrossRef Xu B, Shen W, Liu X, et al. Oridonin inhibits BxPC-3 cell growth through cell apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47:164–73.CrossRef
22.
go back to reference Zhang XH, Liu YX, Jia M, et al. Oridonin inhibits tumor growth in glioma by inducing cell cycle arrest and apoptosis. Cell Mol Biol (Noisy-le-grand). 2014;60:29–36. Zhang XH, Liu YX, Jia M, et al. Oridonin inhibits tumor growth in glioma by inducing cell cycle arrest and apoptosis. Cell Mol Biol (Noisy-le-grand). 2014;60:29–36.
23.
go back to reference Dong Y, Zhang T, Li J, et al. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling. PLoS One. 2014;9:e113830.CrossRefPubMedPubMedCentral Dong Y, Zhang T, Li J, et al. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling. PLoS One. 2014;9:e113830.CrossRefPubMedPubMedCentral
24.
go back to reference Li YC, Sun MR, Zhao YH, et al. Oridonin suppress cell migration via regulation of nonmuscle myosin IIA. Cytotechnology. 2016;68(3):389–97.CrossRefPubMed Li YC, Sun MR, Zhao YH, et al. Oridonin suppress cell migration via regulation of nonmuscle myosin IIA. Cytotechnology. 2016;68(3):389–97.CrossRefPubMed
25.
go back to reference Wang S, Zhong Z, Wan J, et al. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med. 2013;41(1):177–96.CrossRefPubMed Wang S, Zhong Z, Wan J, et al. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med. 2013;41(1):177–96.CrossRefPubMed
26.
go back to reference Ren KK, Wang HZ, Xie LP, et al. The effects of oridonin on cell growth, cell cycle, cell migration and differentiation in melanoma cells. J Ethnopharmacol. 2006;103(2):176–80.CrossRefPubMed Ren KK, Wang HZ, Xie LP, et al. The effects of oridonin on cell growth, cell cycle, cell migration and differentiation in melanoma cells. J Ethnopharmacol. 2006;103(2):176–80.CrossRefPubMed
29.
31.
go back to reference Kokkinos MI, Wafai R, Wong MK, et al. Vimentin and epithelial-mesenchymal transition in human breast cancer-observations in vitro and in vivo. Cells Tissues Organs. 2007;185(1–3):191–203.CrossRefPubMed Kokkinos MI, Wafai R, Wong MK, et al. Vimentin and epithelial-mesenchymal transition in human breast cancer-observations in vitro and in vivo. Cells Tissues Organs. 2007;185(1–3):191–203.CrossRefPubMed
32.
go back to reference Cheng GZ, Chan J, Wang Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67:1979–87.CrossRefPubMed Cheng GZ, Chan J, Wang Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67:1979–87.CrossRefPubMed
33.
go back to reference Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.CrossRefPubMed Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.CrossRefPubMed
34.
go back to reference Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.CrossRefPubMed Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.CrossRefPubMed
35.
go back to reference Zhou Z, Wang S, Song C, et al. Paeoniflorin prevents hypoxia-induced epithelial-mesenchymal transition in human breast cancer cells. Onco Targets Ther. 2016;9:2511–8.CrossRefPubMedPubMedCentral Zhou Z, Wang S, Song C, et al. Paeoniflorin prevents hypoxia-induced epithelial-mesenchymal transition in human breast cancer cells. Onco Targets Ther. 2016;9:2511–8.CrossRefPubMedPubMedCentral
36.
go back to reference Cui Y, Wang Y, Li H, et al. Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways. Oncotarget. 2016. doi:10.18632/oncotarget.8879. Cui Y, Wang Y, Li H, et al. Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways. Oncotarget. 2016. doi:10.​18632/​oncotarget.​8879.
37.
go back to reference Nusse R. The Wnt gene family in tumorigenesis and in normal development. J Steroid Biochem Mol Biol. 1992;43(1–3):9–12.CrossRefPubMed Nusse R. The Wnt gene family in tumorigenesis and in normal development. J Steroid Biochem Mol Biol. 1992;43(1–3):9–12.CrossRefPubMed
38.
go back to reference Bullions LC, Levine AJ. The role of beta-catenin in cell adhesion, signal transduction and cancer. Curr Opin Oncol. 1998;10(1):81–7.CrossRefPubMed Bullions LC, Levine AJ. The role of beta-catenin in cell adhesion, signal transduction and cancer. Curr Opin Oncol. 1998;10(1):81–7.CrossRefPubMed
39.
40.
go back to reference Tanaka Y, Kato K, Notohara K, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm. Cancer Res. 2001;61(23):8401–4.PubMed Tanaka Y, Kato K, Notohara K, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm. Cancer Res. 2001;61(23):8401–4.PubMed
41.
go back to reference Liu Y, Liu YZ, Zhang RX, et al. Oridonin inhibits the proliferation of human osteosarcoma cells by suppressing Wnt/β-catenin signaling. Int J Oncol. 2014;45(2):795–803.PubMed Liu Y, Liu YZ, Zhang RX, et al. Oridonin inhibits the proliferation of human osteosarcoma cells by suppressing Wnt/β-catenin signaling. Int J Oncol. 2014;45(2):795–803.PubMed
Metadata
Title
Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling pathway
Authors
Qian-Qian Liu
Ke Chen
Qiao Ye
Xiao-Hua Jiang
Yun-Wei Sun
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2016
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-016-0336-z

Other articles of this Issue 1/2016

Cancer Cell International 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine