Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2015

Open Access 01-12-2015 | Review

Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus

Authors: Prashilla Soma, Etheresia Pretorius

Published in: Cardiovascular Diabetology | Issue 1/2015

Login to get access

Abstract

Accelerated atherosclerosis is the main underlying factor contributing to the high risk of atherothrombotic events in patients with diabetes mellitus and atherothrombotic complications are the main cause of mortality. Like with many bodily systems, pathology is observed when the normal processes are exaggerated or uncontrolled. This applies to the processes of coagulation and thrombosis as well. In diabetes, in fact, the balance between prothrombotic and fibrinolytic factors is impaired and thus the scale is tipped towards a prothrombotic and hypofibrinolytic milieu, which in association with the vascular changes accompanying plaque formation and ruptures, increases the prevalence of ischaemic events such as angina and myocardial infarction. Apart from traditional, modifiable risk factors for cardiovascular disease like hypertension, smoking, elevated cholesterol; rheological properties, endogenous fibrinolysis and impaired platelet activity are rapidly gaining significance in the pathogenesis of atherosclerosis especially in diabetic subjects. Blood clot formation represents the last step in the athero-thrombotic process, and the structure of the fibrin network has a role in determining predisposition to cardiovascular disease. It is no surprise that just like platelets and fibrin networks, erythrocytes have been shown to play a role in coagulation as well. This is in striking contrast to their traditional physiological role of oxygen transport. In fact, emerging evidence suggests that erythrocytes enhance functional coagulation properties and platelet aggregation. Among the spectrum of haematological abnormalities in diabetes, erythrocyte aggregation and decreased deformability of erythrocytes predominate. More importantly, they are implicated in the pathogenesis of microvascular complications of diabetes. The morphology of platelets, fibrin networks and erythrocytes are thus essential role players in unravelling the pathogenesis of cardiovascular complications in diabetic subjects.
Literature
1.
go back to reference van Rooy MJ, Pretorius E (2014) Obesity, hypertension and hypercholesterolemia as risk factors for atherosclerosis leading to ischemic events. Curr Med Chem 21(19):2121–2129PubMedCrossRef van Rooy MJ, Pretorius E (2014) Obesity, hypertension and hypercholesterolemia as risk factors for atherosclerosis leading to ischemic events. Curr Med Chem 21(19):2121–2129PubMedCrossRef
2.
go back to reference Colwell JA, Nesto RW (2003) The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care 26(7):2181–2188PubMedCrossRef Colwell JA, Nesto RW (2003) The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care 26(7):2181–2188PubMedCrossRef
3.
go back to reference Creager MA, Luscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108(12):1527–1532PubMedCrossRef Creager MA, Luscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108(12):1527–1532PubMedCrossRef
4.
go back to reference Kluft C, Jespersen J (2002) Review: diabetes as a procoagulant condition. Br J Diabetes Vasc Dis 2(5):358–362CrossRef Kluft C, Jespersen J (2002) Review: diabetes as a procoagulant condition. Br J Diabetes Vasc Dis 2(5):358–362CrossRef
5.
go back to reference van Rooy MJ, Pretorius E (2015) Metabolic syndrome, platelet activation and the development of transient ischemic attack or thromboembolic stroke. Thromb Res 135(3):434–442PubMedCrossRef van Rooy MJ, Pretorius E (2015) Metabolic syndrome, platelet activation and the development of transient ischemic attack or thromboembolic stroke. Thromb Res 135(3):434–442PubMedCrossRef
6.
go back to reference Ferreiro JL, Gomez-Hospital JA, Angiolillo DJ (2010) Platelet abnormalities in diabetes mellitus. Diabetes Vasc Dis Res 7(4):251–259CrossRef Ferreiro JL, Gomez-Hospital JA, Angiolillo DJ (2010) Platelet abnormalities in diabetes mellitus. Diabetes Vasc Dis Res 7(4):251–259CrossRef
8.
go back to reference Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W et al (2006) Platelet-derived serotonin mediates liver regeneration. Science (New York, NY) 312(5770):104–107CrossRef Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W et al (2006) Platelet-derived serotonin mediates liver regeneration. Science (New York, NY) 312(5770):104–107CrossRef
9.
go back to reference Heemskerk JW, Bevers EM, Lindhout T (2002) Platelet activation and blood coagulation. Thromb Haemost 88(2):186–193PubMed Heemskerk JW, Bevers EM, Lindhout T (2002) Platelet activation and blood coagulation. Thromb Haemost 88(2):186–193PubMed
10.
go back to reference Rosing J, van Rijn JL, Bevers EM, van Dieijen G, Comfurius P, Zwaal RF (1985) The role of activated human platelets in prothrombin and factor X activation. Blood 65(2):319–332PubMed Rosing J, van Rijn JL, Bevers EM, van Dieijen G, Comfurius P, Zwaal RF (1985) The role of activated human platelets in prothrombin and factor X activation. Blood 65(2):319–332PubMed
11.
go back to reference Eibl N, Krugluger W, Streit G, Schrattbauer K, Hopmeier P, Schernthaner G (2004) Improved metabolic control decreases platelet activation markers in patients with type-2 diabetes. Eur J Clin Invest 34(3):205–209PubMedCrossRef Eibl N, Krugluger W, Streit G, Schrattbauer K, Hopmeier P, Schernthaner G (2004) Improved metabolic control decreases platelet activation markers in patients with type-2 diabetes. Eur J Clin Invest 34(3):205–209PubMedCrossRef
12.
go back to reference Tschoepe D, Schultheiss HP, Kolarov P, Schwippert B, Dannehl K, Nieuwenhuis HK et al (1993) Platelet membrane activation markers are predictive for increased risk of acute ischemic events after PTCA. Circulation 88(1):37–42PubMedCrossRef Tschoepe D, Schultheiss HP, Kolarov P, Schwippert B, Dannehl K, Nieuwenhuis HK et al (1993) Platelet membrane activation markers are predictive for increased risk of acute ischemic events after PTCA. Circulation 88(1):37–42PubMedCrossRef
13.
go back to reference Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL (2001) Platelet dysfunction in type 2 diabetes. Diabetes Care 24(8):1476–1485PubMedCrossRef Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL (2001) Platelet dysfunction in type 2 diabetes. Diabetes Care 24(8):1476–1485PubMedCrossRef
14.
go back to reference Sobol AB, Watala C (2000) The role of platelets in diabetes-related vascular complications. Diabetes Res Clin Pract 50(1):1–16PubMedCrossRef Sobol AB, Watala C (2000) The role of platelets in diabetes-related vascular complications. Diabetes Res Clin Pract 50(1):1–16PubMedCrossRef
15.
go back to reference Pretorius E, Oberholzer HM, van der Spuy WJ, Swanepoel AC, Soma P (2011) Qualitative scanning electron microscopy analysis of fibrin networks and platelet abnormalities in diabetes. Blood Coagul Fibrinolysis Int J Haemost Thromb 22(6):463–467CrossRef Pretorius E, Oberholzer HM, van der Spuy WJ, Swanepoel AC, Soma P (2011) Qualitative scanning electron microscopy analysis of fibrin networks and platelet abnormalities in diabetes. Blood Coagul Fibrinolysis Int J Haemost Thromb 22(6):463–467CrossRef
16.
go back to reference Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 101(3):439–451PubMed Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 101(3):439–451PubMed
17.
go back to reference Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F et al (2006) Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26(12):2594–2604PubMedCrossRef Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F et al (2006) Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26(12):2594–2604PubMedCrossRef
18.
go back to reference Alzahrani SH, Ajjan RA (2010) Coagulation and fibrinolysis in diabetes. Diabetes Vasc Dis Res 7(4):260–273CrossRef Alzahrani SH, Ajjan RA (2010) Coagulation and fibrinolysis in diabetes. Diabetes Vasc Dis Res 7(4):260–273CrossRef
19.
go back to reference Fatah K, Silveira A, Tornvall P, Karpe F, Blomback M, Hamsten A (1996) Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb Haemost 76(4):535–540PubMed Fatah K, Silveira A, Tornvall P, Karpe F, Blomback M, Hamsten A (1996) Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb Haemost 76(4):535–540PubMed
20.
go back to reference Swanepoel AC, Nielsen VG, Pretorius E (2015) Viscoelasticity and ultrastructure in coagulation and inflammation: two diverse techniques, one conclusion. Inflammation 38(4):1707–1726PubMedCrossRef Swanepoel AC, Nielsen VG, Pretorius E (2015) Viscoelasticity and ultrastructure in coagulation and inflammation: two diverse techniques, one conclusion. Inflammation 38(4):1707–1726PubMedCrossRef
21.
go back to reference Kell DB, Pretorius E (2015) The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr Biol Quant Biosci Nano Macro 7(1):24–52 Kell DB, Pretorius E (2015) The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr Biol Quant Biosci Nano Macro 7(1):24–52
22.
go back to reference Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK (2007) Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab 92(11):4352–4358PubMedCrossRef Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK (2007) Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab 92(11):4352–4358PubMedCrossRef
23.
go back to reference Breitenstein A, Tanner FC, Luscher TF (2010) Tissue factor and cardiovascular disease: quo vadis? Circ J 74(1):3–12PubMedCrossRef Breitenstein A, Tanner FC, Luscher TF (2010) Tissue factor and cardiovascular disease: quo vadis? Circ J 74(1):3–12PubMedCrossRef
24.
go back to reference Undas A, Wiek I, Stepien E, Zmudka K, Tracz W (2008) Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 31(8):1590–1595PubMedCentralPubMedCrossRef Undas A, Wiek I, Stepien E, Zmudka K, Tracz W (2008) Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 31(8):1590–1595PubMedCentralPubMedCrossRef
25.
go back to reference Corrado E, Rizzo M, Coppola G, Fattouch K, Novo G, Marturana I et al (2010) An update on the role of markers of inflammation in atherosclerosis. J Atheroscler Thromb 17(1):1–11PubMedCrossRef Corrado E, Rizzo M, Coppola G, Fattouch K, Novo G, Marturana I et al (2010) An update on the role of markers of inflammation in atherosclerosis. J Atheroscler Thromb 17(1):1–11PubMedCrossRef
26.
go back to reference Jorneskog G, Egberg N, Fagrell B, Fatah K, Hessel B, Johnsson H et al (1996) Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia 39(12):1519–1523PubMedCrossRef Jorneskog G, Egberg N, Fagrell B, Fatah K, Hessel B, Johnsson H et al (1996) Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia 39(12):1519–1523PubMedCrossRef
27.
go back to reference Marchi-Cappelletti R, Suarez-Nieto N (2010) Preliminary study of the fibrin structure in hypertensive, dyslipidemic and type 2 diabetic patients. Invest Clin 51(3):315–324PubMed Marchi-Cappelletti R, Suarez-Nieto N (2010) Preliminary study of the fibrin structure in hypertensive, dyslipidemic and type 2 diabetic patients. Invest Clin 51(3):315–324PubMed
28.
go back to reference Pieters M, Covic N, van der Westhuizen FH, Nagaswami C, Baras Y, Toit Loots D (2008) Glycaemic control improves fibrin network characteristics in type 2 diabetes—a purified fibrinogen model. Thromb Haemost 99(4):691–700PubMedCentralPubMed Pieters M, Covic N, van der Westhuizen FH, Nagaswami C, Baras Y, Toit Loots D (2008) Glycaemic control improves fibrin network characteristics in type 2 diabetes—a purified fibrinogen model. Thromb Haemost 99(4):691–700PubMedCentralPubMed
29.
go back to reference Balasubramaniam K, Viswanathan GN, Marshall SM, Zaman AG (2012) Increased atherothrombotic burden in patients with diabetes mellitus and acute coronary syndrome: a review of antiplatelet therapy. Cardiol Res Pract 2012:909154PubMedCentralPubMed Balasubramaniam K, Viswanathan GN, Marshall SM, Zaman AG (2012) Increased atherothrombotic burden in patients with diabetes mellitus and acute coronary syndrome: a review of antiplatelet therapy. Cardiol Res Pract 2012:909154PubMedCentralPubMed
30.
go back to reference Brown GE, Ritter LS, McDonagh PF, Cohen Z (2014) Functional enhancement of platelet activation and aggregation by erythrocytes: role of red cells in thrombosis. Peer J PrePrints 2:e351v351 Brown GE, Ritter LS, McDonagh PF, Cohen Z (2014) Functional enhancement of platelet activation and aggregation by erythrocytes: role of red cells in thrombosis. Peer J PrePrints 2:e351v351
31.
go back to reference Virmani R, Roberts WC (1983) Extravasated erythrocytes, iron, and fibrin in atherosclerotic plaques of coronary arteries in fatal coronary heart disease and their relation to luminal thrombus: frequency and significance in 57 necropsy patients and in 2958 five mm segments of 224 major epicardial coronary arteries. Am Heart J 105(5):788–797PubMedCrossRef Virmani R, Roberts WC (1983) Extravasated erythrocytes, iron, and fibrin in atherosclerotic plaques of coronary arteries in fatal coronary heart disease and their relation to luminal thrombus: frequency and significance in 57 necropsy patients and in 2958 five mm segments of 224 major epicardial coronary arteries. Am Heart J 105(5):788–797PubMedCrossRef
32.
go back to reference Mahindrakar YS, Suryakar AN, Ankush RD, Katkam RV, Kumbhar KM (2007) Comparison between erythrocyte hemoglobin and spectrin glycosylation and role of oxidative stress in type-2 diabetes mellitus. Indian J Clin Biochem 22(1):91–94PubMedCentralPubMedCrossRef Mahindrakar YS, Suryakar AN, Ankush RD, Katkam RV, Kumbhar KM (2007) Comparison between erythrocyte hemoglobin and spectrin glycosylation and role of oxidative stress in type-2 diabetes mellitus. Indian J Clin Biochem 22(1):91–94PubMedCentralPubMedCrossRef
33.
go back to reference Os D (2009) Rheological and electrical behaviour of erythrocytes in patients with diabetes mellitus. Rom J Biophys 19(14):239–250 Os D (2009) Rheological and electrical behaviour of erythrocytes in patients with diabetes mellitus. Rom J Biophys 19(14):239–250
34.
go back to reference Gersh KC, Nagaswami C, Weisel JW (2009) Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost 102(6):1169–1175PubMedCentralPubMed Gersh KC, Nagaswami C, Weisel JW (2009) Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost 102(6):1169–1175PubMedCentralPubMed
36.
go back to reference Schmid-Schonbein H, Wells R, Goldstone J (1969) Influence of deformability of human red cells upon blood viscosity. Circ Res 25(2):131–143PubMedCrossRef Schmid-Schonbein H, Wells R, Goldstone J (1969) Influence of deformability of human red cells upon blood viscosity. Circ Res 25(2):131–143PubMedCrossRef
37.
go back to reference Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40(4):405–412PubMedCrossRef Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40(4):405–412PubMedCrossRef
38.
go back to reference Arbustini E (2007) Total erythrocyte membrane cholesterol: an innocent new marker or an active player in acute coronary syndromes? J Am Coll Cardiol 49(21):2090–2092PubMedCrossRef Arbustini E (2007) Total erythrocyte membrane cholesterol: an innocent new marker or an active player in acute coronary syndromes? J Am Coll Cardiol 49(21):2090–2092PubMedCrossRef
39.
go back to reference Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. the Paul Dudley White Lecture 1995. Circulation 94(8):2013–2020PubMedCrossRef Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. the Paul Dudley White Lecture 1995. Circulation 94(8):2013–2020PubMedCrossRef
40.
go back to reference Schwartz RS, Madsen JW, Rybicki AC, Nagel RL (1991) Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 40(6):701–708PubMedCrossRef Schwartz RS, Madsen JW, Rybicki AC, Nagel RL (1991) Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 40(6):701–708PubMedCrossRef
41.
go back to reference Kowluru R, Bitensky MW, Kowluru A, Dembo M, Keaton PA, Buican T (1989) Reversible sodium pump defect and swelling in the diabetic rat erythrocyte: effects on filterability and implications for microangiopathy. Proc Natl Acad Sci USA 86(9):3327–3331PubMedCentralPubMedCrossRef Kowluru R, Bitensky MW, Kowluru A, Dembo M, Keaton PA, Buican T (1989) Reversible sodium pump defect and swelling in the diabetic rat erythrocyte: effects on filterability and implications for microangiopathy. Proc Natl Acad Sci USA 86(9):3327–3331PubMedCentralPubMedCrossRef
42.
go back to reference Singh M, Shin S (2009) Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian J Exp Biol 47(1):7–15PubMed Singh M, Shin S (2009) Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian J Exp Biol 47(1):7–15PubMed
43.
go back to reference Rizvi SI, Zaid MA, Anis R, Mishra N (2005) Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin Exp Pharmacol Physiol 32(1–2):70–75PubMedCrossRef Rizvi SI, Zaid MA, Anis R, Mishra N (2005) Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin Exp Pharmacol Physiol 32(1–2):70–75PubMedCrossRef
44.
go back to reference Srour Bilto YY, Juma M, Irhimeh MR (2000) Exposure of human erythrocytes to oxygen radicals causes loss of deformability, increased osmotic fragility, lipid peroxidation and protein degradation. Clin Hemorheol Microcirc 23(1):13–21PubMed Srour Bilto YY, Juma M, Irhimeh MR (2000) Exposure of human erythrocytes to oxygen radicals causes loss of deformability, increased osmotic fragility, lipid peroxidation and protein degradation. Clin Hemorheol Microcirc 23(1):13–21PubMed
45.
go back to reference Vahalkar GS, Haldankar VA (2008) RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress. Indian J Clin Biochem 23(3):223–226PubMedCentralPubMedCrossRef Vahalkar GS, Haldankar VA (2008) RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress. Indian J Clin Biochem 23(3):223–226PubMedCentralPubMedCrossRef
46.
go back to reference Buys AV, Van Rooy MJ, Soma P, Van Papendorp D, Lipinski B, Pretorius E (2013) Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol 12:25PubMedCentralPubMedCrossRef Buys AV, Van Rooy MJ, Soma P, Van Papendorp D, Lipinski B, Pretorius E (2013) Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol 12:25PubMedCentralPubMedCrossRef
47.
go back to reference Shin S, Ku Y, Babu N, Singh M (2007) Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol 45(1):121–128PubMed Shin S, Ku Y, Babu N, Singh M (2007) Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol 45(1):121–128PubMed
48.
go back to reference McMurchie EJ, Raison JK (1979) Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. Biochim Biophys Acta 554(2):364–374PubMedCrossRef McMurchie EJ, Raison JK (1979) Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. Biochim Biophys Acta 554(2):364–374PubMedCrossRef
49.
go back to reference Wali RK, Jaffe S, Kumar D, Kalra VK (1988) Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus. Diabetes 37(1):104–111PubMedCrossRef Wali RK, Jaffe S, Kumar D, Kalra VK (1988) Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus. Diabetes 37(1):104–111PubMedCrossRef
50.
go back to reference Lipinski B, Pretorius E (2012) Novel pathway of ironinduced blood coagulation: implications for diabetes mellitus and its complications. Pol Arch Med Wewn 122(3):115–122PubMed Lipinski B, Pretorius E (2012) Novel pathway of ironinduced blood coagulation: implications for diabetes mellitus and its complications. Pol Arch Med Wewn 122(3):115–122PubMed
52.
go back to reference Lipinski B, Pretorius E, Oberholzer HM, Van Der Spuy WJ (2012) Iron enhances generation of fibrin fibers in human blood: implications for pathogenesis of stroke. Microsc Res Tech 75(9):1185–1190PubMedCrossRef Lipinski B, Pretorius E, Oberholzer HM, Van Der Spuy WJ (2012) Iron enhances generation of fibrin fibers in human blood: implications for pathogenesis of stroke. Microsc Res Tech 75(9):1185–1190PubMedCrossRef
53.
go back to reference Pretorius E, Kell DB (2014) Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. Integr Biol Quant Biosci Nano Macro 6(5):486–510 Pretorius E, Kell DB (2014) Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. Integr Biol Quant Biosci Nano Macro 6(5):486–510
55.
56.
go back to reference Pretorius E, Lipinski B (2013) Thromboembolic ischemic stroke changes red blood cell morphology. Cardiovasc Pathol 22(3):241–242PubMedCrossRef Pretorius E, Lipinski B (2013) Thromboembolic ischemic stroke changes red blood cell morphology. Cardiovasc Pathol 22(3):241–242PubMedCrossRef
57.
go back to reference Atici AG, Kayhan S, Aydin D, Yilmaz YA (2013) Plasma viscosity levels in pulmonary thromboembolism. Clin Hemorheol Microcirc 55(3):313–320PubMed Atici AG, Kayhan S, Aydin D, Yilmaz YA (2013) Plasma viscosity levels in pulmonary thromboembolism. Clin Hemorheol Microcirc 55(3):313–320PubMed
58.
go back to reference Baskurt OK, Meiselman HJ (2013) Erythrocyte aggregation: basic aspects and clinical importance. Clin Hemorheol Microcirc 53(1–2):23–37PubMed Baskurt OK, Meiselman HJ (2013) Erythrocyte aggregation: basic aspects and clinical importance. Clin Hemorheol Microcirc 53(1–2):23–37PubMed
59.
go back to reference Holsworth RE Jr, Cho YI, Weidman JJ, Sloop GD (2014) St Cyr JA: Cardiovascular benefits of phlebotomy: relationship to changes in hemorheological variables. Perfusion 29(2):102–116PubMedCrossRef Holsworth RE Jr, Cho YI, Weidman JJ, Sloop GD (2014) St Cyr JA: Cardiovascular benefits of phlebotomy: relationship to changes in hemorheological variables. Perfusion 29(2):102–116PubMedCrossRef
Metadata
Title
Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus
Authors
Prashilla Soma
Etheresia Pretorius
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2015
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-015-0261-9

Other articles of this Issue 1/2015

Cardiovascular Diabetology 1/2015 Go to the issue