Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2013

Open Access 01-12-2013 | Original investigation

The adaptability of red blood cells

Author: Etheresia Pretorius

Published in: Cardiovascular Diabetology | Issue 1/2013

Login to get access

Abstract

The most important function of red blood cells (RBCs) is the carrying of oxygen, but they are also involved in inflammatory processes and during coagulation. RBCs are extremely deformable and elastic, as they are exposed to shear forces as they travel through the vascular system. In inflammatory conditions, and in the presence of hydroxyl radicals, RBCs loose their discoid shape. Here, ultrastructure of RBCs is studied using a scanning electron microscope, and we determine how fast changes in healthy individuals are noted after exposure to iron and glucose. We compare shape changes in these experiments to RBCs from diabetic and hemochromatosis patients (wild type, as well as hereditary hemochromatosis with mutations H63D/H63D, C282Y/C282Y, H63D/C282Y, C282Y/wild type and H63D/wild type). Thrombin is also added to whole blood exposed to iron, glucose and blood from diabetes and hemochromatosis patients. RBCs are easily deformed to a pointed shape in smears, and, with the addition of thrombin they are entrapped in the fibrin mesh of dense matted fibrin deposits. This entrapping causes severe shape changes due to the pressure of the fibrin onto the stressed cells. The most important observation of the current research is therefore how fast RBC can adapt in a changed environment and that the pressure of fibrin fibers may trap the RBC tightly in the resulting clot.
Appendix
Available only for authorised users
Literature
1.
go back to reference de Almeida JP L, Oliveira S, Saldanha C: Erythrocyte as a biological sensor. Clin Hemorheol Microcirc. 2012, 51: 1-20. de Almeida JP L, Oliveira S, Saldanha C: Erythrocyte as a biological sensor. Clin Hemorheol Microcirc. 2012, 51: 1-20.
2.
go back to reference Stefanowicz FA, Talwar D, O'Reilly DS, Dickinson N, Atkinson J, Hursthouse AS, Rankin J, Duncan A: Erythrocyte selenium concentration as a marker of selenium status. Clin Nutr (Edinburgh, Scotland). 2013, 10.1016/j.clnu.2013.01.005. Stefanowicz FA, Talwar D, O'Reilly DS, Dickinson N, Atkinson J, Hursthouse AS, Rankin J, Duncan A: Erythrocyte selenium concentration as a marker of selenium status. Clin Nutr (Edinburgh, Scotland). 2013, 10.1016/j.clnu.2013.01.005.
3.
go back to reference Girasole M, Pompeo G, Cricenti A, Congiu-Castellano A, Andreola F, Serafino A, Frazer BH, Boumis G, Amiconi G: Roughness of the plasma membrane as an independent morphological parameter to study RBCs: a quantitative atomic force microscopy investigation. Biochim Biophys Acta. 2007, 1768: 1268-1276. 10.1016/j.bbamem.2007.01.014.CrossRefPubMed Girasole M, Pompeo G, Cricenti A, Congiu-Castellano A, Andreola F, Serafino A, Frazer BH, Boumis G, Amiconi G: Roughness of the plasma membrane as an independent morphological parameter to study RBCs: a quantitative atomic force microscopy investigation. Biochim Biophys Acta. 2007, 1768: 1268-1276. 10.1016/j.bbamem.2007.01.014.CrossRefPubMed
4.
go back to reference Antonio PD, Lasalvia M, Perna G, Capozzi V: Scale-independent roughness value of cell membranes studied by means of AFM technique. Biochim Biophys Acta. 1818, 2012: 3141-3148. Antonio PD, Lasalvia M, Perna G, Capozzi V: Scale-independent roughness value of cell membranes studied by means of AFM technique. Biochim Biophys Acta. 1818, 2012: 3141-3148.
5.
go back to reference Buys AV, Van Rooy MJ, Soma P, Van Papendorp D, Lipinski B, Pretorius E: Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol. 2013, 12: 25-10.1186/1475-2840-12-25.PubMedCentralCrossRefPubMed Buys AV, Van Rooy MJ, Soma P, Van Papendorp D, Lipinski B, Pretorius E: Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol. 2013, 12: 25-10.1186/1475-2840-12-25.PubMedCentralCrossRefPubMed
6.
go back to reference Girasole M, Dinarelli S, Boumis G: Structure and function in native and pathological erythrocytes: a quantitative view from the nanoscale. Micron (Oxford, England: 1993). 2012, 43: 1273-1286. 10.1016/j.micron.2012.03.019.CrossRef Girasole M, Dinarelli S, Boumis G: Structure and function in native and pathological erythrocytes: a quantitative view from the nanoscale. Micron (Oxford, England: 1993). 2012, 43: 1273-1286. 10.1016/j.micron.2012.03.019.CrossRef
7.
go back to reference Montagnana M, Cervellin G, Meschi T, Lippi G: The role of red blood cell distribution width in cardiovascular and thrombotic disorders. Clin Chem Lab Med. 2012, 50: 635-641. Montagnana M, Cervellin G, Meschi T, Lippi G: The role of red blood cell distribution width in cardiovascular and thrombotic disorders. Clin Chem Lab Med. 2012, 50: 635-641.
8.
go back to reference Lieu PT, Heiskala M, Peterson PA, Yang Y: The roles of iron in health and disease. Mol Aspects Med. 2001, 22: 1-87. 10.1016/S0098-2997(00)00006-6.CrossRefPubMed Lieu PT, Heiskala M, Peterson PA, Yang Y: The roles of iron in health and disease. Mol Aspects Med. 2001, 22: 1-87. 10.1016/S0098-2997(00)00006-6.CrossRefPubMed
9.
go back to reference Lipinski B: Hydroxyl radical and its scavengers in health and disease. Oxidative Med Cell Longevity. 2011, 2011: 809696.CrossRef Lipinski B: Hydroxyl radical and its scavengers in health and disease. Oxidative Med Cell Longevity. 2011, 2011: 809696.CrossRef
10.
go back to reference Pretorius E, Lipinski B: Iron alters red blood cell morphology. Blood. 2013, 121: 9-10.1182/blood-2012-09-454793.CrossRefPubMed Pretorius E, Lipinski B: Iron alters red blood cell morphology. Blood. 2013, 121: 9-10.1182/blood-2012-09-454793.CrossRefPubMed
11.
go back to reference Utzschneider KM, Kowdley KV: Hereditary hemochromatosis and diabetes mellitus: implications for clinical practice. Nat Rev Endocrinol. 2010, 6: 26-33. 10.1038/nrendo.2009.241.CrossRefPubMed Utzschneider KM, Kowdley KV: Hereditary hemochromatosis and diabetes mellitus: implications for clinical practice. Nat Rev Endocrinol. 2010, 6: 26-33. 10.1038/nrendo.2009.241.CrossRefPubMed
12.
go back to reference Cheung CL, Cheung TT, Lam KS, Cheung BM: High ferritin and low transferrin saturation are associated with pre-diabetes among a national representative sample of U.S. adults. Clin Nutr (Edinburgh, Scotland). 2012, 10.1016/j.clnu.2012.11.024. Cheung CL, Cheung TT, Lam KS, Cheung BM: High ferritin and low transferrin saturation are associated with pre-diabetes among a national representative sample of U.S. adults. Clin Nutr (Edinburgh, Scotland). 2012, 10.1016/j.clnu.2012.11.024.
13.
go back to reference Lipinski B: Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complications. 2001, 15: 203-210. 10.1016/S1056-8727(01)00143-X.CrossRefPubMed Lipinski B: Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complications. 2001, 15: 203-210. 10.1016/S1056-8727(01)00143-X.CrossRefPubMed
14.
go back to reference Goot K, Hazeldine S, Bentley P, Olynyk J, Crawford D: Elevated serum ferritin - what should GPs know?. Aust Fam Physician. 2012, 41: 945-949.PubMed Goot K, Hazeldine S, Bentley P, Olynyk J, Crawford D: Elevated serum ferritin - what should GPs know?. Aust Fam Physician. 2012, 41: 945-949.PubMed
15.
go back to reference Rong Y, Bao W, Rong S, Fang M, Wang D, Yao P, Hu FB, Liu L: Hemochromatosis gene (HFE) polymorphisms and risk of type 2 diabetes mellitus: a meta-analysis. Am J Epidemiol. 2012, 176: 461-472. 10.1093/aje/kws126.CrossRefPubMed Rong Y, Bao W, Rong S, Fang M, Wang D, Yao P, Hu FB, Liu L: Hemochromatosis gene (HFE) polymorphisms and risk of type 2 diabetes mellitus: a meta-analysis. Am J Epidemiol. 2012, 176: 461-472. 10.1093/aje/kws126.CrossRefPubMed
16.
go back to reference de Luan C, Li H, Li SJ, Zhao Z, Li X, Liu ZM: Body iron stores and dietary iron intake in relation to diabetes in adults in North China. Diabetes Care. 2008, 31: 285-286.CrossRefPubMed de Luan C, Li H, Li SJ, Zhao Z, Li X, Liu ZM: Body iron stores and dietary iron intake in relation to diabetes in adults in North China. Diabetes Care. 2008, 31: 285-286.CrossRefPubMed
17.
go back to reference Pretorius E, Lipinski B: Thromboembolic ischemic stroke changes red blood cell morphology. Cardiovasc Pathol. 2013, 10.1016/j.carpath.2012.11.005. pii: S1054-8807(12)00151-2 Pretorius E, Lipinski B: Thromboembolic ischemic stroke changes red blood cell morphology. Cardiovasc Pathol. 2013, 10.1016/j.carpath.2012.11.005. pii: S1054-8807(12)00151-2
18.
go back to reference Pretorius E, Bester J, Vermeulen N, Lipinski B: Oxidation Inhibits Iron-induced Blood Coagulation. Curr Drug Targets. 2013, 14 (1): 13-9. 10.2174/138945013804806541.PubMedCentralCrossRefPubMed Pretorius E, Bester J, Vermeulen N, Lipinski B: Oxidation Inhibits Iron-induced Blood Coagulation. Curr Drug Targets. 2013, 14 (1): 13-9. 10.2174/138945013804806541.PubMedCentralCrossRefPubMed
19.
go back to reference Pretorius E, Vermeulen N, Bester J, Lipinski B, Kell DB: A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy. Toxicol Mech Methods. 2013, [Epub ahead of print] Pretorius E, Vermeulen N, Bester J, Lipinski B, Kell DB: A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy. Toxicol Mech Methods. 2013, [Epub ahead of print]
20.
go back to reference Balan V, Baldus W, Fairbanks V, Michels V, Burritt M, Klee G: Screening for hemochromatosis: a cost-effectiveness study based on 12,258 patients. Gastroenterology. 1994, 107: 453-459.PubMed Balan V, Baldus W, Fairbanks V, Michels V, Burritt M, Klee G: Screening for hemochromatosis: a cost-effectiveness study based on 12,258 patients. Gastroenterology. 1994, 107: 453-459.PubMed
21.
go back to reference Taher A, Musallam KM, El Rassi F, Duca L, Inati A, Koussa S, Cappellini MD: Levels of non-transferrin-bound iron as an index of iron overload in patients with thalassaemia intermedia. Br J Haematol. 2009, 146: 569-572. 10.1111/j.1365-2141.2009.07810.x.CrossRefPubMed Taher A, Musallam KM, El Rassi F, Duca L, Inati A, Koussa S, Cappellini MD: Levels of non-transferrin-bound iron as an index of iron overload in patients with thalassaemia intermedia. Br J Haematol. 2009, 146: 569-572. 10.1111/j.1365-2141.2009.07810.x.CrossRefPubMed
22.
go back to reference Piga A, Longo F, Duca L, Roggero S, Vinciguerra T, Calabrese R, Hershko C, Cappellini MD: High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol. 2009, 84: 29-33. 10.1002/ajh.21317.CrossRefPubMed Piga A, Longo F, Duca L, Roggero S, Vinciguerra T, Calabrese R, Hershko C, Cappellini MD: High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol. 2009, 84: 29-33. 10.1002/ajh.21317.CrossRefPubMed
23.
go back to reference Lipinski B, Pretorius E: Novel pathway of ironinduced blood coagulation: implications for diabetes mellitus and its complications. Polskie Archiwum Medycyny Wewnetrznej. 2012, 122: 115-122.PubMed Lipinski B, Pretorius E: Novel pathway of ironinduced blood coagulation: implications for diabetes mellitus and its complications. Polskie Archiwum Medycyny Wewnetrznej. 2012, 122: 115-122.PubMed
24.
go back to reference Lynch S, Soslau G: Iron levels found in hemochromatosis patients inhibit gamma-thrombin-induced platelet aggregation. Platelets. 2012, 23: 611-616. 10.3109/09537104.2011.634933.CrossRefPubMed Lynch S, Soslau G: Iron levels found in hemochromatosis patients inhibit gamma-thrombin-induced platelet aggregation. Platelets. 2012, 23: 611-616. 10.3109/09537104.2011.634933.CrossRefPubMed
25.
go back to reference Aisen P: Transferrin receptor 1. Int J Biochem Cell Biol. 2004, 36: 2137-2143. 10.1016/j.biocel.2004.02.007.CrossRefPubMed Aisen P: Transferrin receptor 1. Int J Biochem Cell Biol. 2004, 36: 2137-2143. 10.1016/j.biocel.2004.02.007.CrossRefPubMed
Metadata
Title
The adaptability of red blood cells
Author
Etheresia Pretorius
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2013
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-12-63

Other articles of this Issue 1/2013

Cardiovascular Diabetology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.