Skip to main content
Log in

RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Glyco-oxidation is considered as a source of permanent, cumulative, oxidative damage to long lived proteins in ageing and in diabetes. Although RBC depends solely on glucose for energy purpose, hyperglycemic state glycosylates hemoglobin, creates oxidative stress and puts the cellular components at risk. In view of this, RBC membrane composition was analyzed in diabetic patients. The results were compared with healthy age and sex matched control groups. When RBC membrane components such as protein, sialic acid, phospholipids and cholesterol were determined in insulin dependent diabetes mellitus, a significant rise in phospholipids and cholesterol and significant fall in sialic acid and protein content was noted. RBC membrane composition showed pronounced alterations in insulin dependent diabetes mellitus. These changes were accompanied by higher levels of lipid peroxidation products like Malondialdehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlet B, Stadtman E. Protein oxidation in aging, Disease and oxidative stress. The American Society for Biochemistry and Molecular Biology, Inc 1997; 272: 20313–20316.

    Google Scholar 

  2. Oberley LW. Free radicals and diabetes. Free Rad Biol Med 1999; 5: 113–124.

    Article  Google Scholar 

  3. Emily H, Tammy MB. Antioxidants, NFKB Activation and Diabetogenesis. Expt Biol Med 1999; 222:205–213.

    Article  Google Scholar 

  4. Colman PG, Wang Li, Lafferty KJ. Molecular biology and autoimmunity of type I diabetes mellitus. In: Drazini B, Melmed S, Lepoith D, eds. Molecular and Cellular Biology of Diabetes Mellitus. Insulin secretion. New York: Alan R. Liss Inc 1989; 125–137.

    Google Scholar 

  5. Gerbitz KD. Does the mitochondrial DNA play a role in the pathogenesis of diabetes? Diabetologia 1992; 35:1181–1186.

    Article  PubMed  CAS  Google Scholar 

  6. Jain SK. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 1989; 264:21340–21345.

    PubMed  CAS  Google Scholar 

  7. Mohandas N, Chasis JA. Red blood cells deformability, membrane material properties and shape, regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 1993; 30:171–178.

    PubMed  CAS  Google Scholar 

  8. Stadtman ER, Levine RL. Protein Oxidation. Ann NY Acad Sci 2000; 899:199–208.

    Google Scholar 

  9. Chiu D, Kuypers F, Lubin B. Lipid peroxidation in human red cells. Semin Hematol 1989; 25:257–276.

    Google Scholar 

  10. Shinar E, Rachmilewitz E. Oxidative denaturation of Red Blood Cells in thalassemia. Semin Hematol 1990; 27: 70–82.

    PubMed  CAS  Google Scholar 

  11. Kuross S, Hebbel R. Nonheme iron in sickle erythrocyte membranes; association with phospholipid and potential role in lipid peroxidation. Blood 1988; 72:1278–1285.

    PubMed  CAS  Google Scholar 

  12. Folch J, Lees M, Sloane G. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957; 226:497–509.

    PubMed  CAS  Google Scholar 

  13. Allain CC, Poon LS, Chan CS. Enzymatic determination of total serum cholesterol. Clin Chim Acta 1974; 20:470–475.

    CAS  Google Scholar 

  14. Takayama M, Itoh S, Nagasaki T, Tanimizu I. A new enzymatic method for determination of serum phospholipids. Clin Chim Acta 1977; 79(1):93–98.

    Article  PubMed  CAS  Google Scholar 

  15. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagent. J Biol Chem 1951; 193: 265–275.

    PubMed  CAS  Google Scholar 

  16. Warren L. Method for estimation of total bound Nacetylneuraminic acid. Clin Chem 1975; 21:412.

    Google Scholar 

  17. Stocks J, Dormandy TL. The auto-oxidation of human red cell lipids induced by hydrogen peroxide. Brit J Haemat 1971; 20:95–111.

    Article  PubMed  CAS  Google Scholar 

  18. Sevanian A, Kim E. Phopholipase A2 dependent release of fatty acids from peroxidized membranes. J Free Rad Biol Med 1985; 1:263–271.

    Article  CAS  Google Scholar 

  19. Stadtman ER, Levine RL. Protein Oxidation. Ann NY Acad Sci 2000; 899:199–208.

    Google Scholar 

  20. Sharpe PC, Liu WH, Yue KKM, Dorothy McMaster, Catherwood MA, McGinty AM, et al. Glucose induced oxidative stress in vascular contractile cells: comparison of aortic smooth muscle cells and retinal pericytes. Diabetes 1998; 47:801–809.

    Article  PubMed  CAS  Google Scholar 

  21. Adewoye EO, Akinlade KS, Olorunsogo OO. Erythrocyte membrane protein alteration in diabetics. East Afr Med J 2001; 78(8):438–440.

    PubMed  CAS  Google Scholar 

  22. Chiu D, Lubin B, Shonet S. Erythrocyte membrane lipid reorganization during sickling process. Br J Haematol 1979; 41:223–234.

    Article  PubMed  CAS  Google Scholar 

  23. Haest CWM, Plasa G, Kamp D, Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta 1978; 509: 21–32.

    Article  PubMed  CAS  Google Scholar 

  24. Ricther C. Biophysical consequences of lipid-peroxidation in membranes. Chem Phys Lipids 1987; 44:175–189.

    Article  Google Scholar 

  25. Lubin B, Chiu D, Bastaky J, Roelafsen B, Van Deenen LLM. Oxidative hemoglobin denaturation and RBC destruction. Semin Haematol 1989; 26:128–135.

    Google Scholar 

  26. Child P. Molecular species composition of membrane phosphatidylcholine influences the rate of cholesterol efflux from human erythrocytes & vesicles of erythrocytes lipids. Biochim Biophys Acta 1985; 814:22,237–246.

    PubMed  CAS  Google Scholar 

  27. Daniels CK, Goldstein DB. Movement of free cholesterol from lipoprotein on lipid vesicles into erythrocytes. Acceleration by ethanol in vitro. Molecular Pharmacology 1982; 21: 694–700.

    PubMed  CAS  Google Scholar 

  28. Mazzanti L, Rabani RA, Salvolini E, Tesei M, Martareli D, Venerando B, et al. Sialic acid, diabetes, and aging: a study on the erythrocyte membrane. Metabolism 1977; 46:59–61.

    Article  Google Scholar 

  29. Forte P, Copland M, Smith LM, Miline F, Sutherland J, Benjamin N. Basic nitric oxide synthesis in essential hypertension. Lancet 1997; 22:349(9055):837–842.

    Article  Google Scholar 

  30. Venerando B, Fiorilli A, Croci G, Tringali C, Goi G, Mazzanti L, et al. Acidic and neutral sialidase in the erythrocyte membrane of type II diabetic patients. Blood 2002; 99:1064–1070.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya A. Haldankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vahalkar, G.S., Haldankar, V.A. RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress. Indian J Clin Biochem 23, 223–226 (2008). https://doi.org/10.1007/s12291-008-0050-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-008-0050-2

Key words

Navigation