Skip to main content
Top
Published in: Respiratory Research 1/2018

Open Access 01-12-2018 | Research

Relationship of CT-quantified emphysema, small airways disease and bronchial wall dimensions with physiological, inflammatory and infective measures in COPD

Authors: Kristoffer Ostridge, Nicholas P. Williams, Viktoriya Kim, Stephen Harden, Simon Bourne, Stuart C. Clarke, Emmanuel Aris, Sonia Mesia-Vela, Jeanne-Marie Devaster, Andrew Tuck, Anthony Williams, Stephen Wootton, Karl J. Staples, Tom M. A. Wilkinson, on behalf of the AERIS Study Group

Published in: Respiratory Research | Issue 1/2018

Login to get access

Abstract

Background

COPD is a complex, heterogeneous disease characterised by progressive development of airflow limitation. Spirometry provides little information about key aspects of pathology and is poorly related to clinical outcome, so other tools are required to investigate the disease. We sought to explore the relationships between quantitative CT analysis with functional, inflammatory and infective assessments of disease to identify the utility of imaging to stratify disease to better predict outcomes and disease response.

Methods

Patients from the AERIS study with moderate-very severe COPD underwent HRCT, with image analysis determining the quantity of emphysema (%LAA<− 950), small airways disease (E/I MLD) and bronchial wall thickening (Pi10). At enrolment subjects underwent lung function testing, six-minute walk testing (6MWT), blood sampling for inflammatory markers and sputum sampling for white cell differential and microbiological culture and PCR.

Results

122 subjects were included in this analysis. Emphysema and small airways disease had independent associations with airflow obstruction (β =  0.34, p < 0.001 and β = − 0.56, p < 0.001). %LAA<− 950 had independent associations with gas transfer (β =  0.37, p < 0.001) and E/I MLD with RV/TLC (β = 0.30, p =0.003). The distance walked during the 6MWT was not associated with CT parameters, but exertional desaturation was independently associated with emphysema (β = 0.73, p < 0.001). Pi10 did not show any independent associations with lung function or functional parameters.
No CT parameters had any associations with sputum inflammatory cells. Greater emphysema was associated with lower levels of systemic inflammation (CRP β = − 0.34, p < 0.001 and fibrinogen β = − 0.28, p =0.003). There was no significant difference in any of the CT parameters between subjects where potentially pathogenic bacteria were detected in sputum and those where it was not.

Conclusions

This study provides further validation for the use of quantitative CT measures of emphysema and small airways disease in COPD as they showed strong associations with pulmonary physiology and functional status. In contrast to this quantitative CT measures showed few convincing associations with biological measures of disease, suggesting it is not an effective tool at measuring disease activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176:532–55.CrossRefPubMed Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176:532–55.CrossRefPubMed
2.
go back to reference Ostridge K, Wilkinson TMAA. Present and future utility of computed tomography scanning in the assessment and management of COPD. Eur Respir J. 2016;48:216–28. ERJ-00041-2016CrossRefPubMed Ostridge K, Wilkinson TMAA. Present and future utility of computed tomography scanning in the assessment and management of COPD. Eur Respir J. 2016;48:216–28. ERJ-00041-2016CrossRefPubMed
3.
go back to reference Schroeder JD, McKenzie AS, J a Z, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol. 2013;201:W460–70.CrossRefPubMedPubMedCentral Schroeder JD, McKenzie AS, J a Z, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol. 2013;201:W460–70.CrossRefPubMedPubMedCentral
4.
go back to reference Gevenois P a, De Vuyst P, de Maertelaer V, et al. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med. 1996;154:187–92.CrossRefPubMed Gevenois P a, De Vuyst P, de Maertelaer V, et al. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med. 1996;154:187–92.CrossRefPubMed
5.
go back to reference Gevenois P a, De Vuyst P, de Maertelaer V, et al. Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med. 1995;152:653–7.CrossRefPubMed Gevenois P a, De Vuyst P, de Maertelaer V, et al. Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med. 1995;152:653–7.CrossRefPubMed
6.
go back to reference Achenbach T, Weinheimer O, Biedermann A, et al. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. Eur Radiol. 2008;18:2731–8.CrossRefPubMed Achenbach T, Weinheimer O, Biedermann A, et al. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. Eur Radiol. 2008;18:2731–8.CrossRefPubMed
7.
go back to reference Yamashiro T, Matsuoka S, Estépar RSJ, et al. Quantitative assessment of bronchial wall attenuation with thin-section CT: an indicator of airflow limitation in chronic obstructive pulmonary disease. AJR Am J Roentgenol. 2010;195:363–9.CrossRefPubMed Yamashiro T, Matsuoka S, Estépar RSJ, et al. Quantitative assessment of bronchial wall attenuation with thin-section CT: an indicator of airflow limitation in chronic obstructive pulmonary disease. AJR Am J Roentgenol. 2010;195:363–9.CrossRefPubMed
9.
go back to reference Smith BM, Hoffman E a, Rabinowitz D, et al. Comparison of spatially matched airways reveals thinner airway walls in COPD. The multi-ethnic study of atherosclerosis (MESA) COPD study and the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax 2014;0:1–10. Smith BM, Hoffman E a, Rabinowitz D, et al. Comparison of spatially matched airways reveals thinner airway walls in COPD. The multi-ethnic study of atherosclerosis (MESA) COPD study and the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax 2014;0:1–10.
10.
go back to reference Mets OM, Zanen P, Lammers J-WJ, et al. Early identification of small airways disease on lung cancer screening CT: comparison of current air trapping measures. Lung. 2012;190:629–33.CrossRefPubMed Mets OM, Zanen P, Lammers J-WJ, et al. Early identification of small airways disease on lung cancer screening CT: comparison of current air trapping measures. Lung. 2012;190:629–33.CrossRefPubMed
11.
go back to reference Lee YK, Oh Y-M, Lee J-H, et al. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung. 2008;186:157–65.CrossRefPubMed Lee YK, Oh Y-M, Lee J-H, et al. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung. 2008;186:157–65.CrossRefPubMed
12.
go back to reference Ostridge K, Williams N, Kim V, et al. Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD. Thorax. 2016;71:126–32.CrossRefPubMed Ostridge K, Williams N, Kim V, et al. Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD. Thorax. 2016;71:126–32.CrossRefPubMed
13.
go back to reference Bhatt S, Soler X, Wang X, et al. Association between functional small airways disease and FEV 1 decline in COPD. Am J Respir Crit Care Med. 2016;1164:201511–2219O. Bhatt S, Soler X, Wang X, et al. Association between functional small airways disease and FEV 1 decline in COPD. Am J Respir Crit Care Med. 2016;1164:201511–2219O.
14.
go back to reference Mehdi Rambod MD, Janos Porszasz MD, BJ PD, FCCP MMD, Crapo JD, MD FCCP, Casaburi R, PhD MD, CopdgI FCCP t, Rambod M, Porszasz J, et al. six-minute walk distance predictors, including CT scan measures, in the COPDGene cohort. Chest. 2012;141:867–75.CrossRefPubMed Mehdi Rambod MD, Janos Porszasz MD, BJ PD, FCCP MMD, Crapo JD, MD FCCP, Casaburi R, PhD MD, CopdgI FCCP t, Rambod M, Porszasz J, et al. six-minute walk distance predictors, including CT scan measures, in the COPDGene cohort. Chest. 2012;141:867–75.CrossRefPubMed
15.
go back to reference Diaz AA, Bartholmai B, San R, et al. Relationship of emphysema and airway disease assessed by CT to exercise capacity in COPD. Respir Med. 2011;104:1145–51.CrossRef Diaz AA, Bartholmai B, San R, et al. Relationship of emphysema and airway disease assessed by CT to exercise capacity in COPD. Respir Med. 2011;104:1145–51.CrossRef
16.
go back to reference Bourne S, Cohet C, Kim V, et al. Acute exacerbation and respiratory InfectionS in COPD (AERIS): protocol for a prospective, observational cohort study. BMJ Open. 2014;4:e004546.CrossRefPubMedPubMedCentral Bourne S, Cohet C, Kim V, et al. Acute exacerbation and respiratory InfectionS in COPD (AERIS): protocol for a prospective, observational cohort study. BMJ Open. 2014;4:e004546.CrossRefPubMedPubMedCentral
17.
go back to reference Wilkinson TMA, Aris E, Bourne S, et al. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax. 2017;72:919–27.CrossRefPubMedPubMedCentral Wilkinson TMA, Aris E, Bourne S, et al. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax. 2017;72:919–27.CrossRefPubMedPubMedCentral
18.
go back to reference Patel IS, Vlahos I, TM a W, et al. Bronchiectasis, exacerbation indices, and inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:400–7.CrossRefPubMed Patel IS, Vlahos I, TM a W, et al. Bronchiectasis, exacerbation indices, and inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:400–7.CrossRefPubMed
19.
go back to reference Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.CrossRefPubMed Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.CrossRefPubMed
20.
go back to reference Vignola AM, SI R, FE H, et al. Standardised methodology of sputum induction and processing. Future directions. Eur Respir J Suppl. 2002;37:51s–5s.PubMed Vignola AM, SI R, FE H, et al. Standardised methodology of sputum induction and processing. Future directions. Eur Respir J Suppl. 2002;37:51s–5s.PubMed
21.
go back to reference Dournes G, Laurent F, Coste F, et al. Computed tomographic measurement of airway remodeling and emphysema in advanced chronic obstructive pulmonary disease: correlation with pulmonary hypertension. Am J Respir Crit Care Med. 2015;191:63–70.CrossRefPubMed Dournes G, Laurent F, Coste F, et al. Computed tomographic measurement of airway remodeling and emphysema in advanced chronic obstructive pulmonary disease: correlation with pulmonary hypertension. Am J Respir Crit Care Med. 2015;191:63–70.CrossRefPubMed
22.
go back to reference Martínez-García M-A, de la Rosa Carrillo D, Soler-Cataluña J-J, et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187:823–31.CrossRefPubMed Martínez-García M-A, de la Rosa Carrillo D, Soler-Cataluña J-J, et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187:823–31.CrossRefPubMed
23.
go back to reference Martínez-García MÁ, Soler-Cataluña JJ, Donat Sanz Y, et al. Factors associated with bronchiectasis in patients with COPD. Chest. 2011;140:1130–7.CrossRefPubMed Martínez-García MÁ, Soler-Cataluña JJ, Donat Sanz Y, et al. Factors associated with bronchiectasis in patients with COPD. Chest. 2011;140:1130–7.CrossRefPubMed
24.
go back to reference Mets OM, Murphy K, Zanen P, et al. The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease. Eur Radiol. 2012;22:120–8.CrossRefPubMed Mets OM, Murphy K, Zanen P, et al. The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease. Eur Radiol. 2012;22:120–8.CrossRefPubMed
25.
go back to reference Ogawa E, Nakano Y, Ohara T, et al. Body mass index in male patients with COPD: correlation with low attenuation areas on CT. Thorax. 2009;64:20–5.CrossRefPubMed Ogawa E, Nakano Y, Ohara T, et al. Body mass index in male patients with COPD: correlation with low attenuation areas on CT. Thorax. 2009;64:20–5.CrossRefPubMed
26.
go back to reference Cavigli E, Camiciottoli G, Diciotti S, et al. Whole-lung densitometry versus visual assessment of emphysema. Eur Radiol. 2009;19:1686–92.CrossRefPubMed Cavigli E, Camiciottoli G, Diciotti S, et al. Whole-lung densitometry versus visual assessment of emphysema. Eur Radiol. 2009;19:1686–92.CrossRefPubMed
27.
go back to reference Han MK, Bartholmai B, Liu LX, et al. Clinical significance of radiologic characterizations in COPD. COPD. 2009;6:459–67.CrossRefPubMed Han MK, Bartholmai B, Liu LX, et al. Clinical significance of radiologic characterizations in COPD. COPD. 2009;6:459–67.CrossRefPubMed
28.
go back to reference Washko GR, Criner GJ, Mohsenifar Z, et al. Computed tomographic-based quantification of emphysema and correlation to pulmonary function and mechanics. COPD. 2008;5:177–86.CrossRefPubMed Washko GR, Criner GJ, Mohsenifar Z, et al. Computed tomographic-based quantification of emphysema and correlation to pulmonary function and mechanics. COPD. 2008;5:177–86.CrossRefPubMed
29.
go back to reference Desai SR, Hansell DM, Walker A, et al. Quantification of emphysema: a composite physiologic index derived from CT estimation of disease extent. Eur Radiol. 2007;17:911–8.CrossRefPubMed Desai SR, Hansell DM, Walker A, et al. Quantification of emphysema: a composite physiologic index derived from CT estimation of disease extent. Eur Radiol. 2007;17:911–8.CrossRefPubMed
30.
go back to reference Madani A, Zanen J, de Maertelaer V, et al. Pulmonary emphysema: objective quantification at multi-detector row CT—comparison with macroscopic and microscopic morphometry. Radiology. 2006;238:1036–43.CrossRefPubMed Madani A, Zanen J, de Maertelaer V, et al. Pulmonary emphysema: objective quantification at multi-detector row CT—comparison with macroscopic and microscopic morphometry. Radiology. 2006;238:1036–43.CrossRefPubMed
31.
go back to reference Matsuoka S, Kurihara Y, Yagihashi K, et al. Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol. 2008;190:762–9.CrossRefPubMed Matsuoka S, Kurihara Y, Yagihashi K, et al. Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol. 2008;190:762–9.CrossRefPubMed
32.
go back to reference R a O’D, Peebles C, J a W, et al. Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD. Thorax. 2004;59:837–42.CrossRef R a O’D, Peebles C, J a W, et al. Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD. Thorax. 2004;59:837–42.CrossRef
33.
go back to reference Golpe R, Pérez-de-Llano L a, Méndez-Marote L, et al. Prognostic value of walk distance, work, oxygen saturation, and dyspnea during 6-minute walk test in COPD patients. Respir Care. 2013;58:1329–34.CrossRefPubMed Golpe R, Pérez-de-Llano L a, Méndez-Marote L, et al. Prognostic value of walk distance, work, oxygen saturation, and dyspnea during 6-minute walk test in COPD patients. Respir Care. 2013;58:1329–34.CrossRefPubMed
34.
go back to reference Casanova C, Cote C, Marin JM, et al. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest. 2008;134:746–52.CrossRefPubMed Casanova C, Cote C, Marin JM, et al. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest. 2008;134:746–52.CrossRefPubMed
35.
go back to reference Cote CG, Casanova C, Marín JM, et al. Validation and comparison of reference equations for the 6-min walk distance test. Eur Respir J. 2008;31:571–8.CrossRefPubMed Cote CG, Casanova C, Marín JM, et al. Validation and comparison of reference equations for the 6-min walk distance test. Eur Respir J. 2008;31:571–8.CrossRefPubMed
36.
go back to reference Cote CG, Pinto-Plata V, Kasprzyk K, et al. The 6-min walk distance, peak oxygen uptake, and mortality in COPD. Chest. 2007;132:1778–85.CrossRefPubMed Cote CG, Pinto-Plata V, Kasprzyk K, et al. The 6-min walk distance, peak oxygen uptake, and mortality in COPD. Chest. 2007;132:1778–85.CrossRefPubMed
37.
go back to reference Pinto-Plata VM, Cote C, Cabral H, et al. The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. Eur Respir J. 2004;23:28–33.CrossRefPubMed Pinto-Plata VM, Cote C, Cabral H, et al. The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. Eur Respir J. 2004;23:28–33.CrossRefPubMed
38.
go back to reference Hersh CP, Washko GR, Estépar RSJ, et al. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respir Res. 2013;14:42.CrossRefPubMedPubMedCentral Hersh CP, Washko GR, Estépar RSJ, et al. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respir Res. 2013;14:42.CrossRefPubMedPubMedCentral
39.
go back to reference MeiLan K, Han MDM, Ella A, Kazerooni M, David A, Lynch M, et al. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology. 2011;261:274–82.CrossRef MeiLan K, Han MDM, Ella A, Kazerooni M, David A, Lynch M, et al. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology. 2011;261:274–82.CrossRef
40.
go back to reference Mair G, Miller JJ, McAllister D, et al. Computed tomographic emphysema distribution: relationship to clinical features in a cohort of smokers. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2009;33:536–42. Mair G, Miller JJ, McAllister D, et al. Computed tomographic emphysema distribution: relationship to clinical features in a cohort of smokers. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2009;33:536–42.
41.
go back to reference Camiciottoli G, Bigazzi F, Bartolucci M, et al. BODE-index, modified BODE-index and ADO-score in chronic obstructive pulmonary disease: relationship with COPD phenotypes and CT lung density changes. COPD. 2012;9:297–304.CrossRefPubMed Camiciottoli G, Bigazzi F, Bartolucci M, et al. BODE-index, modified BODE-index and ADO-score in chronic obstructive pulmonary disease: relationship with COPD phenotypes and CT lung density changes. COPD. 2012;9:297–304.CrossRefPubMed
42.
go back to reference Waatevik M, Johannessen A, Gomez Real F, et al. Oxygen desaturation in 6-min walk test is a risk factor for adverse outcomes in COPD. Eur Respir J. 2016;48(1):82–91. ERJ-00975-2015CrossRefPubMed Waatevik M, Johannessen A, Gomez Real F, et al. Oxygen desaturation in 6-min walk test is a risk factor for adverse outcomes in COPD. Eur Respir J. 2016;48(1):82–91. ERJ-00975-2015CrossRefPubMed
43.
go back to reference Takigawa N, Tada A, Soda R, et al. Distance and oxygen desaturation in 6-min walk test predict prognosis in COPD patients. Respir Med. 2007;101:561–7.CrossRefPubMed Takigawa N, Tada A, Soda R, et al. Distance and oxygen desaturation in 6-min walk test predict prognosis in COPD patients. Respir Med. 2007;101:561–7.CrossRefPubMed
44.
go back to reference Boschetto P, Quintavalle S, Zeni E, et al. Association between markers of emphysema and more severe chronic obstructive pulmonary disease. Thorax. 2006;61:1037–42.CrossRefPubMedPubMedCentral Boschetto P, Quintavalle S, Zeni E, et al. Association between markers of emphysema and more severe chronic obstructive pulmonary disease. Thorax. 2006;61:1037–42.CrossRefPubMedPubMedCentral
45.
47.
go back to reference Subramanian DR, Jenkins L, Edgar R, et al. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186:1125–32.CrossRefPubMed Subramanian DR, Jenkins L, Edgar R, et al. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186:1125–32.CrossRefPubMed
48.
49.
go back to reference James C, Hogg MD, Fanny Chu B. Sc., Soraya Utokaparch, b.Sc., Ryan woods, m.Sc., W. Mark Elliott PD, Liliana Buzatu, M.D., Ruben M. Cherniack, M.D., Robert M. Rogers, M.D., frank C. Sciurba MD, Harvey O. Coxson, Ph.D., and Peter D. Paré MD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–2653. James C, Hogg MD, Fanny Chu B. Sc., Soraya Utokaparch, b.Sc., Ryan woods, m.Sc., W. Mark Elliott PD, Liliana Buzatu, M.D., Ruben M. Cherniack, M.D., Robert M. Rogers, M.D., frank C. Sciurba MD, Harvey O. Coxson, Ph.D., and Peter D. Paré MD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–2653.
50.
go back to reference Papaioannou AI, Mazioti A, Kiropoulos T, et al. Systemic and airway inflammation and the presence of emphysema in patients with COPD. Respir Med. 2010;104:275–82.CrossRefPubMed Papaioannou AI, Mazioti A, Kiropoulos T, et al. Systemic and airway inflammation and the presence of emphysema in patients with COPD. Respir Med. 2010;104:275–82.CrossRefPubMed
51.
go back to reference Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galbán S, Rehemtulla A, Kazerooni EA, FJ M, BD R. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18:1711–6.CrossRefPubMedPubMedCentral Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galbán S, Rehemtulla A, Kazerooni EA, FJ M, BD R. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18:1711–6.CrossRefPubMedPubMedCentral
Metadata
Title
Relationship of CT-quantified emphysema, small airways disease and bronchial wall dimensions with physiological, inflammatory and infective measures in COPD
Authors
Kristoffer Ostridge
Nicholas P. Williams
Viktoriya Kim
Stephen Harden
Simon Bourne
Stuart C. Clarke
Emmanuel Aris
Sonia Mesia-Vela
Jeanne-Marie Devaster
Andrew Tuck
Anthony Williams
Stephen Wootton
Karl J. Staples
Tom M. A. Wilkinson
on behalf of the AERIS Study Group
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2018
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-018-0734-y

Other articles of this Issue 1/2018

Respiratory Research 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.