Skip to main content
Top
Published in: BMC Medicine 1/2022

01-12-2022 | Vaccination | Research article

Projecting vaccine demand and impact for emerging zoonotic pathogens

Authors: Anita Lerch, Quirine A. ten Bosch, Maïna L’Azou Jackson, Alison A. Bettis, Mauro Bernuzzi, Georgina A. V. Murphy, Quan M. Tran, John H. Huber, Amir S. Siraj, Gebbiena M. Bron, Margaret Elliott, Carson S. Hartlage, Sojung Koh, Kathyrn Strimbu, Magdalene Walters, T. Alex Perkins, Sean M. Moore

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, several pose a concern due to their epidemiological characteristics and evolutionary potential. To enable effective responses to these pathogens in the event that they undergo future emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development of vaccines for several pathogens prioritized by the World Health Organization. A major challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak response.

Methods

We developed a modeling framework for outbreak response for emerging zoonoses under three reactive vaccination strategies to assess sustainable vaccine manufacturing needs, vaccine stockpile requirements, and the potential impact of the outbreak response. This framework incorporates geographically variable zoonotic spillover rates, human-to-human transmission, and the implementation of reactive vaccination campaigns in response to disease outbreaks. As proof of concept, we applied the framework to four priority pathogens: Lassa virus, Nipah virus, MERS coronavirus, and Rift Valley virus.

Results

Annual vaccine regimen requirements for a population-wide strategy ranged from > 670,000 (95% prediction interval 0–3,630,000) regimens for Lassa virus to 1,190,000 (95% PrI 0–8,480,000) regimens for Rift Valley fever virus, while the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several orders of magnitude lower (between 1/25 and 1/700) than those required by a population-wide strategy. For each pathogen and vaccination strategy, reactive vaccination typically prevented fewer than 10% of cases, because of their presently low R0 values. Targeting HCWs had a higher per-regimen impact than population-wide vaccination.

Conclusions

Our framework provides a flexible methodology for estimating vaccine stockpile needs and the geographic distribution of demand under a range of outbreak response scenarios. Uncertainties in our model estimates highlight several knowledge gaps that need to be addressed to target vulnerable populations more accurately. These include surveillance gaps that mask the true geographic distribution of each pathogen, details of key routes of spillover from animal reservoirs to humans, and the role of human-to-human transmission outside of healthcare settings. In addition, our estimates are based on the current epidemiology of each pathogen, but pathogen evolution could alter vaccine stockpile requirements.
Appendix
Available only for authorised users
Literature
1.
go back to reference Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–2.PubMedCrossRef Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–2.PubMedCrossRef
4.
go back to reference Sheahan T, Rockx B, Donaldson E, Sims A, Pickles R, Corti D, et al. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. J Virol. 2008;82(5):2274–85.PubMedCrossRef Sheahan T, Rockx B, Donaldson E, Sims A, Pickles R, Corti D, et al. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. J Virol. 2008;82(5):2274–85.PubMedCrossRef
5.
go back to reference Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D, Karesh WB, et al. Prediction and prevention of the next pandemic zoonosis. Lancet. 2012;380(9857):1956–65.PubMedPubMedCentralCrossRef Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D, Karesh WB, et al. Prediction and prevention of the next pandemic zoonosis. Lancet. 2012;380(9857):1956–65.PubMedPubMedCentralCrossRef
6.
go back to reference Røttingen J-A, Gouglas D, Feinberg M, Plotkin S, Raghavan KV, Witty A, et al. New vaccines against epidemic infectious diseases. N Engl J Med. 2017;376(7):610–3.PubMedCrossRef Røttingen J-A, Gouglas D, Feinberg M, Plotkin S, Raghavan KV, Witty A, et al. New vaccines against epidemic infectious diseases. N Engl J Med. 2017;376(7):610–3.PubMedCrossRef
7.
go back to reference Excler J-L, Saville M, Berkley S, Kim JH. Vaccine development for emerging infectious diseases. Nat Med. 2021;27(4):591–600.PubMedCrossRef Excler J-L, Saville M, Berkley S, Kim JH. Vaccine development for emerging infectious diseases. Nat Med. 2021;27(4):591–600.PubMedCrossRef
9.
go back to reference Gouglas D, Christodoulou M, Plotkin SA, Hatchett R. CEPI: driving progress toward epidemic preparedness and response. Epidemiol Rev. 2019;41(1):28–33.PubMedPubMedCentralCrossRef Gouglas D, Christodoulou M, Plotkin SA, Hatchett R. CEPI: driving progress toward epidemic preparedness and response. Epidemiol Rev. 2019;41(1):28–33.PubMedPubMedCentralCrossRef
10.
go back to reference Bernasconi V, Kristiansen PA, Whelan M, Román RG, Bettis A, Yimer SA, et al. Developing vaccines against epidemic-prone emerging infectious diseases. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020;63(1):65–73.PubMedCrossRef Bernasconi V, Kristiansen PA, Whelan M, Román RG, Bettis A, Yimer SA, et al. Developing vaccines against epidemic-prone emerging infectious diseases. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020;63(1):65–73.PubMedCrossRef
11.
15.
go back to reference Medlock J, Galvani AP. Optimizing influenza vaccine distribution. Science. 2009;325(5948):1705–8.PubMedCrossRef Medlock J, Galvani AP. Optimizing influenza vaccine distribution. Science. 2009;325(5948):1705–8.PubMedCrossRef
17.
go back to reference Linthicum KJ, Britch SC, Anyamba A. Rift Valley fever: an emerging mosquito-borne disease. Annu Rev Entomol. 2016;61:395–415.PubMedCrossRef Linthicum KJ, Britch SC, Anyamba A. Rift Valley fever: an emerging mosquito-borne disease. Annu Rev Entomol. 2016;61:395–415.PubMedCrossRef
18.
go back to reference Cauchemez S, Nouvellet P, Cori A, Jombart T, Garske T, Clapham H, et al. Unraveling the drivers of MERS-CoV transmission. Proc Natl Acad Sci U S A. 2016;113(32):9081–6.PubMedPubMedCentralCrossRef Cauchemez S, Nouvellet P, Cori A, Jombart T, Garske T, Clapham H, et al. Unraveling the drivers of MERS-CoV transmission. Proc Natl Acad Sci U S A. 2016;113(32):9081–6.PubMedPubMedCentralCrossRef
19.
go back to reference Siddle KJ, Eromon P, Barnes KG, Mehta S, Oguzie JU, Odia I, et al. Genomic analysis of Lassa virus during an increase in cases in Nigeria in 2018. N Engl J Med. 2018;379(18):1745–53.PubMedPubMedCentralCrossRef Siddle KJ, Eromon P, Barnes KG, Mehta S, Oguzie JU, Odia I, et al. Genomic analysis of Lassa virus during an increase in cases in Nigeria in 2018. N Engl J Med. 2018;379(18):1745–53.PubMedPubMedCentralCrossRef
20.
go back to reference Nikolay B, Salje H, Hossain MJ, Khan AKMD, Sazzad HMS, Rahman M, et al. Transmission of Nipah virus - 14 years of investigations in Bangladesh. N Engl J Med. 2019;380(19):1804–14.PubMedPubMedCentralCrossRef Nikolay B, Salje H, Hossain MJ, Khan AKMD, Sazzad HMS, Rahman M, et al. Transmission of Nipah virus - 14 years of investigations in Bangladesh. N Engl J Med. 2019;380(19):1804–14.PubMedPubMedCentralCrossRef
25.
go back to reference Mylne AQN, Pigott DM, Longbottom J, Shearer F, Duda KA, Messina JP, et al. Mapping the zoonotic niche of Lassa fever in Africa. Trans R Soc Trop Med Hyg. 2015;109(8):483–92.PubMedPubMedCentralCrossRef Mylne AQN, Pigott DM, Longbottom J, Shearer F, Duda KA, Messina JP, et al. Mapping the zoonotic niche of Lassa fever in Africa. Trans R Soc Trop Med Hyg. 2015;109(8):483–92.PubMedPubMedCentralCrossRef
26.
27.
go back to reference Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis. 2001;7(3):439–41.PubMedPubMedCentralCrossRef Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis. 2001;7(3):439–41.PubMedPubMedCentralCrossRef
28.
go back to reference Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, et al. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007. Emerg Infect Dis. 2009;15(8):1229–35.PubMedPubMedCentralCrossRef Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, et al. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007. Emerg Infect Dis. 2009;15(8):1229–35.PubMedPubMedCentralCrossRef
29.
go back to reference Pulliam JRC, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface. 2012;9(66):89–101.PubMedCrossRef Pulliam JRC, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface. 2012;9(66):89–101.PubMedCrossRef
31.
32.
go back to reference Müller MA, Meyer B, Corman VM, Al-Masri M, Turkestani A, Ritz D, et al. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study. Lancet Infect Dis. 2015;15:559–564. Available from: https://doi.org/10.1016/s1473-3099(15)70090-3 Müller MA, Meyer B, Corman VM, Al-Masri M, Turkestani A, Ritz D, et al. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study. Lancet Infect Dis. 2015;15:559–564. Available from: https://​doi.​org/​10.​1016/​s1473-3099(15)70090-3
34.
go back to reference Hui DS, Azhar EI, Kim Y-J, Memish ZA, Oh M-D, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis. 2018;18(8):e217–27.PubMedPubMedCentralCrossRef Hui DS, Azhar EI, Kim Y-J, Memish ZA, Oh M-D, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis. 2018;18(8):e217–27.PubMedPubMedCentralCrossRef
35.
go back to reference Fisher-Hoch SP, Tomori O, Nasidi A, Perez-Oronoz GI, Fakile Y, Hutwagner L, et al. Review of cases of nosocomial Lassa fever in Nigeria: the high price of poor medical practice. BMJ. 1995;311(7009):857–9.PubMedPubMedCentralCrossRef Fisher-Hoch SP, Tomori O, Nasidi A, Perez-Oronoz GI, Fakile Y, Hutwagner L, et al. Review of cases of nosocomial Lassa fever in Nigeria: the high price of poor medical practice. BMJ. 1995;311(7009):857–9.PubMedPubMedCentralCrossRef
36.
go back to reference Park SH, Kim Y-S, Jung Y, Choi SY, Cho N-H, Jeong HW, et al. Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea. Infect Chemother. 2016;48(2):99–107.PubMedPubMedCentralCrossRef Park SH, Kim Y-S, Jung Y, Choi SY, Cho N-H, Jeong HW, et al. Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea. Infect Chemother. 2016;48(2):99–107.PubMedPubMedCentralCrossRef
37.
go back to reference Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DAT, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369(5):407–16.PubMedPubMedCentralCrossRef Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DAT, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369(5):407–16.PubMedPubMedCentralCrossRef
38.
go back to reference Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res. 2010;41(6):61.PubMedPubMedCentralCrossRef Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res. 2010;41(6):61.PubMedPubMedCentralCrossRef
39.
go back to reference Bron GM, Strimbu K, Cecilia H, Lerch A, Moore SM, Tran Q, et al. Over 100 years of Rift Valley fever: a patchwork of data on pathogen spread and spillover. Pathogens. 2021;10(6):708.PubMedPubMedCentralCrossRef Bron GM, Strimbu K, Cecilia H, Lerch A, Moore SM, Tran Q, et al. Over 100 years of Rift Valley fever: a patchwork of data on pathogen spread and spillover. Pathogens. 2021;10(6):708.PubMedPubMedCentralCrossRef
41.
go back to reference Anyamba A, Chretien J-P, Small J, Tucker CJ, Formenty PB, Richardson JH, et al. Prediction of a Rift Valley fever outbreak. Proc Natl Acad Sci U S A. 2009;106(3):955–9.PubMedPubMedCentralCrossRef Anyamba A, Chretien J-P, Small J, Tucker CJ, Formenty PB, Richardson JH, et al. Prediction of a Rift Valley fever outbreak. Proc Natl Acad Sci U S A. 2009;106(3):955–9.PubMedPubMedCentralCrossRef
42.
go back to reference Anyamba A, Linthicum KJ, Small J, Britch SC, Pak E, de La Rocque S, et al. Prediction, assessment of the Rift Valley fever activity in East and Southern Africa 2006–2008 and possible vector control strategies. Am J Trop Med Hyg. 2010;83(2_Suppl):43–51.PubMedPubMedCentralCrossRef Anyamba A, Linthicum KJ, Small J, Britch SC, Pak E, de La Rocque S, et al. Prediction, assessment of the Rift Valley fever activity in East and Southern Africa 2006–2008 and possible vector control strategies. Am J Trop Med Hyg. 2010;83(2_Suppl):43–51.PubMedPubMedCentralCrossRef
43.
go back to reference Al-Hamdan NA, Panackal AA, Al Bassam TH, Alrabea A, Al Hazmi M, Al Mazroa Y, et al. The risk of nosocomial transmission of Rift Valley fever. PLoS Negl Trop Dis. 2015;9(12):e0004314.PubMedPubMedCentralCrossRef Al-Hamdan NA, Panackal AA, Al Bassam TH, Alrabea A, Al Hazmi M, Al Mazroa Y, et al. The risk of nosocomial transmission of Rift Valley fever. PLoS Negl Trop Dis. 2015;9(12):e0004314.PubMedPubMedCentralCrossRef
48.
go back to reference Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. RJ. 2017;9(2):378–400.CrossRef Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. RJ. 2017;9(2):378–400.CrossRef
49.
go back to reference Maina J, Ouma PO, Macharia PM, Alegana VA, Mitto B, Fall IS, et al. A spatial database of health facilities managed by the public health sector in sub Saharan Africa. Sci Data. 2019;6(1):134.PubMedPubMedCentralCrossRef Maina J, Ouma PO, Macharia PM, Alegana VA, Mitto B, Fall IS, et al. A spatial database of health facilities managed by the public health sector in sub Saharan Africa. Sci Data. 2019;6(1):134.PubMedPubMedCentralCrossRef
51.
go back to reference Lo Iacono G, Cunningham AA, Fichet-Calvet E, Garry RF, Grant DS, Khan SH, et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl Trop Dis. 2015;9(1) Available from: https://pubmed.ncbi.nlm.nih.gov/25569707/. [cited 2020 Dec 29]. Lo Iacono G, Cunningham AA, Fichet-Calvet E, Garry RF, Grant DS, Khan SH, et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl Trop Dis. 2015;9(1) Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​25569707/​. [cited 2020 Dec 29].
52.
go back to reference Farrington CP, Kanaan MN, Gay NJ. Branching process models for surveillance of infectious diseases controlled by mass vaccination. Biostatistics. 2003;4(2):279–95.PubMedCrossRef Farrington CP, Kanaan MN, Gay NJ. Branching process models for surveillance of infectious diseases controlled by mass vaccination. Biostatistics. 2003;4(2):279–95.PubMedCrossRef
53.
go back to reference Cauchemez S, Fraser C, Van Kerkhove MD, Donnelly CA, Riley S, Rambaut A, et al. Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect Dis. 2014;14(1):50–6.PubMedCrossRef Cauchemez S, Fraser C, Van Kerkhove MD, Donnelly CA, Riley S, Rambaut A, et al. Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect Dis. 2014;14(1):50–6.PubMedCrossRef
54.
go back to reference Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet. 2013;382(9893):694–9.PubMedPubMedCentralCrossRef Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet. 2013;382(9893):694–9.PubMedPubMedCentralCrossRef
55.
56.
go back to reference Chowell G, Blumberg S, Simonsen L, Miller MA, Viboud C. Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics. 2014;9:40–51.PubMedPubMedCentralCrossRef Chowell G, Blumberg S, Simonsen L, Miller MA, Viboud C. Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics. 2014;9:40–51.PubMedPubMedCentralCrossRef
57.
go back to reference Kucharski AJ, Althaus CL. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Euro Surveill. 2015;20(25):14–8.PubMedCrossRef Kucharski AJ, Althaus CL. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Euro Surveill. 2015;20(25):14–8.PubMedCrossRef
59.
go back to reference Bird BH, Ksiazek TG, Nichol ST, Maclachlan NJ. Rift Valley fever virus. J Am Vet Med Assoc. 2009;234(7):883–93.PubMedCrossRef Bird BH, Ksiazek TG, Nichol ST, Maclachlan NJ. Rift Valley fever virus. J Am Vet Med Assoc. 2009;234(7):883–93.PubMedCrossRef
60.
go back to reference Ali M, Debes AK, Luquero FJ, Kim DR, Park JY, Digilio L, et al. Potential for controlling cholera using a ring vaccination strategy: re-analysis of data from a cluster-randomized clinical trial. PLoS Med. 2016;13(9):e1002120.PubMedPubMedCentralCrossRef Ali M, Debes AK, Luquero FJ, Kim DR, Park JY, Digilio L, et al. Potential for controlling cholera using a ring vaccination strategy: re-analysis of data from a cluster-randomized clinical trial. PLoS Med. 2016;13(9):e1002120.PubMedPubMedCentralCrossRef
61.
go back to reference Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, John Edmunds W, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389:505–518. Available from: https://doi.org/10.1016/s0140-6736(16)32621-6 Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, John Edmunds W, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389:505–518. Available from: https://​doi.​org/​10.​1016/​s0140-6736(16)32621-6
62.
go back to reference Tatem AJ. WorldPop, open data for spatial demography. Sci Data. 2017;31(4):170004.CrossRef Tatem AJ. WorldPop, open data for spatial demography. Sci Data. 2017;31(4):170004.CrossRef
64.
65.
go back to reference Wilson ML, Chapman LE, Hall DB, Dykstra EA, Ba K, Zeller HG, et al. Rift Valley fever in rural northern Senegal: human risk factors and potential vectors. Am J Trop Med Hyg. 1994;50(6):663–75.PubMedCrossRef Wilson ML, Chapman LE, Hall DB, Dykstra EA, Ba K, Zeller HG, et al. Rift Valley fever in rural northern Senegal: human risk factors and potential vectors. Am J Trop Med Hyg. 1994;50(6):663–75.PubMedCrossRef
66.
go back to reference Nyakarahuka L, de St MA, Purpura L, Ervin E, Balinandi S, Tumusiime A, et al. Prevalence and risk factors of Rift Valley fever in humans and animals from Kabale district in Southwestern Uganda, 2016. PLoS Negl Trop Dis. 2018;12(5):e0006412.PubMedPubMedCentralCrossRef Nyakarahuka L, de St MA, Purpura L, Ervin E, Balinandi S, Tumusiime A, et al. Prevalence and risk factors of Rift Valley fever in humans and animals from Kabale district in Southwestern Uganda, 2016. PLoS Negl Trop Dis. 2018;12(5):e0006412.PubMedPubMedCentralCrossRef
67.
go back to reference Msimang V, Thompson PN, Jansen van Vuren P, Tempia S, Cordel C, Kgaladi J, et al. Rift Valley fever virus exposure amongst farmers, farm workers, and veterinary professionals in Central South Africa. Viruses. 2019 ;11(2). Available from: https://doi.org/10.3390/v11020140 Msimang V, Thompson PN, Jansen van Vuren P, Tempia S, Cordel C, Kgaladi J, et al. Rift Valley fever virus exposure amongst farmers, farm workers, and veterinary professionals in Central South Africa. Viruses. 2019 ;11(2). Available from: https://​doi.​org/​10.​3390/​v11020140
68.
go back to reference Chika-Igwenyi Nneka M, Harrison Rebecca E, Psarra Christina, Gil-Cuesta Julita, Gulamhusein Maria, Onwe Emeka O, et al. Early onset of neurological features differentiates two outbreaks of Lassa fever in Ebonyi state, Nigeria during 2017–2018. PLoS Negl Trop Dis. 2021;15(3):e0009169. https://doi.org/10.1371/journal.pntd.0009169. Chika-Igwenyi Nneka M, Harrison Rebecca E, Psarra Christina, Gil-Cuesta Julita, Gulamhusein Maria, Onwe Emeka O, et al. Early onset of neurological features differentiates two outbreaks of Lassa fever in Ebonyi state, Nigeria during 2017–2018. PLoS Negl Trop Dis. 2021;15(3):e0009169. https://​doi.​org/​10.​1371/​journal.​pntd.​0009169.
69.
go back to reference Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU, Rahman M, et al. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne Zoonotic Dis. 2012;12(1):65–72.PubMedCrossRef Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU, Rahman M, et al. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne Zoonotic Dis. 2012;12(1):65–72.PubMedCrossRef
70.
go back to reference Islam MS, Sazzad HMS, Satter SM, Sultana S, Hossain MJ, Hasan M, et al. Nipah virus transmission from bats to humans associated with drinking traditional liquor made from date palm sap, Bangladesh, 2011-2014. Emerg Infect Dis. 2016;22(4):664–70.PubMedPubMedCentralCrossRef Islam MS, Sazzad HMS, Satter SM, Sultana S, Hossain MJ, Hasan M, et al. Nipah virus transmission from bats to humans associated with drinking traditional liquor made from date palm sap, Bangladesh, 2011-2014. Emerg Infect Dis. 2016;22(4):664–70.PubMedPubMedCentralCrossRef
Metadata
Title
Projecting vaccine demand and impact for emerging zoonotic pathogens
Authors
Anita Lerch
Quirine A. ten Bosch
Maïna L’Azou Jackson
Alison A. Bettis
Mauro Bernuzzi
Georgina A. V. Murphy
Quan M. Tran
John H. Huber
Amir S. Siraj
Gebbiena M. Bron
Margaret Elliott
Carson S. Hartlage
Sojung Koh
Kathyrn Strimbu
Magdalene Walters
T. Alex Perkins
Sean M. Moore
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02405-1

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue