Skip to main content
Top
Published in: BMC Medicine 1/2021

01-12-2021 | Isoniazid | Technical advance

Evaluation of a serum-based antigen test for tuberculosis in HIV-exposed infants: a diagnostic accuracy study

Authors: Liyan Mao, Sylvia M. LaCourse, Soyeon Kim, Chang Liu, Bo Ning, Duran Bao, Jia Fan, Christopher J. Lyon, Ziyong Sun, Sharon Nachman, Charles D. Mitchell, Tony Y. Hu

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

Non-sputum methods are urgently needed to improve tuberculosis diagnosis and treatment monitoring in children. This study evaluated the ability of a serum assay quantifying a species-specific peptide of the Mycobacterium tuberculosis CFP-10 virulence factor via nanotechnology and matrix-assisted laser desorption ionization time-of-flight mass spectrometry to diagnose tuberculosis in HIV-infected and HIV-uninfected infants.

Methods

Serum CFP-10 peptide signal was blinded evaluated in cryopreserved sera of 519 BCG-immunized, HIV-exposed infants (284 HIV-infected, 235 HIV-uninfected) from a multi-center randomized placebo-controlled isoniazid prophylaxis trial conducted in southern Africa between 2004 and 2008, who were followed up to 192 weeks for Mtb infection and TB. Children were classified as confirmed, unconfirmed, or unlikely tuberculosis cases using 2015 NIH diagnostic criteria for pediatric TB.

Results

In HIV-infected infants, CFP-10 signal had 100% sensitivity for confirmed TB (5/5, 95% CI, 47.8–100) and 83.7% sensitivity for unconfirmed TB (36/43, 95% CI 69.3–93.2), with 93.1% specificity (203/218, 95% CI 88.9–96.1). In HIV-uninfected infants, CFP-10 signal detected the single confirmed TB case and 75.0% of unconfirmed TB cases (15/20; 95% CI 50.9–91.3), with 96.2% specificity (177/184, 95% CI, 92.3–98.5). Serum CFP-10 achieved 77% diagnostic sensitivity for confirmed and unconfirmed TB (13/17, 95% CI, 50–93%) at ≤ 24 weeks pre-diagnosis, and both CFP-10-positivity and concentration declined following anti-TB therapy initiation.

Conclusions

Serum CFP-10 signal exhibited high diagnostic sensitivity and specificity for tuberculosis in HIV-infected and HIV-uninfected infants and potential utility for early TB detection and monitoring of anti-TB treatment responses.
Appendix
Available only for authorised users
Literature
2.
go back to reference Dodd PJ, Yuen CM, Sismanidis C, et al. The global burden of tuberculosis mortality in children: a mathematical modeling study. Lancet Glob Health. 2017;5:e898–906.CrossRef Dodd PJ, Yuen CM, Sismanidis C, et al. The global burden of tuberculosis mortality in children: a mathematical modeling study. Lancet Glob Health. 2017;5:e898–906.CrossRef
3.
go back to reference Perez-Velez CM, Marais BJ. Tuberculosis in children. N Engl J Med. 2012;367:348–61.CrossRef Perez-Velez CM, Marais BJ. Tuberculosis in children. N Engl J Med. 2012;367:348–61.CrossRef
4.
go back to reference Marais BJ, Gie RP, Hesseling AC, et al. A refined symptom-based approach to diagnose pulmonary tuberculosis in children. Pediatrics. 2006;118:e1350–9.CrossRef Marais BJ, Gie RP, Hesseling AC, et al. A refined symptom-based approach to diagnose pulmonary tuberculosis in children. Pediatrics. 2006;118:e1350–9.CrossRef
5.
go back to reference Edwards DJ, Kitetele F, Van Rie A. Agreement between clinical scoring systems used for the diagnosis of pediatric tuberculosis in the HIV era. Int J Tuberc Lung Dis. 2007;11:263–9.PubMed Edwards DJ, Kitetele F, Van Rie A. Agreement between clinical scoring systems used for the diagnosis of pediatric tuberculosis in the HIV era. Int J Tuberc Lung Dis. 2007;11:263–9.PubMed
6.
go back to reference Zar HJ, Connell TG, Nicol M. Diagnosis of pulmonary tuberculosis in children: new advances. Expert Rev Anti-Infect Ther. 2010;8:277–88.CrossRef Zar HJ, Connell TG, Nicol M. Diagnosis of pulmonary tuberculosis in children: new advances. Expert Rev Anti-Infect Ther. 2010;8:277–88.CrossRef
7.
go back to reference Nicol MP, Zar HJ. New specimens and laboratory diagnostics for childhood pulmonary TB: progress and prospects. Paediatr Respir Rev. 2011;12:16–21.CrossRef Nicol MP, Zar HJ. New specimens and laboratory diagnostics for childhood pulmonary TB: progress and prospects. Paediatr Respir Rev. 2011;12:16–21.CrossRef
8.
go back to reference Zar HJ, Hanslo D, Apolles P, et al. Induced sputum versus gastric lavage for microbiological confirmation of pulmonary tuberculosis in infants and young children: a prospective study. Lancet. 2005;365:130–4.CrossRef Zar HJ, Hanslo D, Apolles P, et al. Induced sputum versus gastric lavage for microbiological confirmation of pulmonary tuberculosis in infants and young children: a prospective study. Lancet. 2005;365:130–4.CrossRef
9.
go back to reference Pai M, Behr MA, Dowdy D, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2:16076. Pai M, Behr MA, Dowdy D, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2:16076.
10.
go back to reference World Health Organization. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children: policy update. World Health Organization, 2013. https://apps.who.int/iris/handle/10665/112472. Assessed 15 Jan 2020. World Health Organization. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children: policy update. World Health Organization, 2013. https://​apps.​who.​int/​iris/​handle/​10665/​112472. Assessed 15 Jan 2020.
11.
go back to reference Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med. 2015;3:451–61.CrossRef Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med. 2015;3:451–61.CrossRef
12.
go back to reference Sabi I, Rachow A, Mapamba D, et al. Xpert MTB/RIF ultra assay for the diagnosis of pulmonary tuberculosis in children: a multicentre comparative accuracy study. J Inf Secur. 2018;77:321–7. Sabi I, Rachow A, Mapamba D, et al. Xpert MTB/RIF ultra assay for the diagnosis of pulmonary tuberculosis in children: a multicentre comparative accuracy study. J Inf Secur. 2018;77:321–7.
13.
go back to reference Nicol MP, Workman L, Prins M, et al. Accuracy of Xpert Mtb/Rif ultra for the diagnosis of pulmonary tuberculosis in children. Pediatr Infect Dis J. 2018;37:e261–3.CrossRef Nicol MP, Workman L, Prins M, et al. Accuracy of Xpert Mtb/Rif ultra for the diagnosis of pulmonary tuberculosis in children. Pediatr Infect Dis J. 2018;37:e261–3.CrossRef
14.
go back to reference Atherton RR, Cresswell FV, Ellis J, et al. Xpert MTB/RIF ultra for tuberculosis testing in children: a mini-review and commentary. Front Pediatr. 2019;7:34.CrossRef Atherton RR, Cresswell FV, Ellis J, et al. Xpert MTB/RIF ultra for tuberculosis testing in children: a mini-review and commentary. Front Pediatr. 2019;7:34.CrossRef
15.
go back to reference Kampmann B, Whittaker E, Williams A, et al. Interferon- release assays do not identify more children with active tuberculosis than the tuberculin skin test. Eur Respir J. 2009;33:1374–82.CrossRef Kampmann B, Whittaker E, Williams A, et al. Interferon- release assays do not identify more children with active tuberculosis than the tuberculin skin test. Eur Respir J. 2009;33:1374–82.CrossRef
16.
17.
go back to reference Kristi M, Guinn MJH, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol. 2004;51:359–70.CrossRef Kristi M, Guinn MJH, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol. 2004;51:359–70.CrossRef
18.
go back to reference Fan J, Zhang H, Nguyen DT, et al. Rapid diagnosis of new and relapse tuberculosis by quantification of a circulating antigen in HIV-infected adults in the Greater Houston metropolitan area. BMC Med. 2017;15:188.CrossRef Fan J, Zhang H, Nguyen DT, et al. Rapid diagnosis of new and relapse tuberculosis by quantification of a circulating antigen in HIV-infected adults in the Greater Houston metropolitan area. BMC Med. 2017;15:188.CrossRef
19.
go back to reference Calligaro GL, Zijenah LS, Peter JG, et al. Effect of new tuberculosis diagnostic technologies on community-based intensified case finding: a multicentre randomized controlled trial. Lancet Infect Dis. 2017;17:441–50.CrossRef Calligaro GL, Zijenah LS, Peter JG, et al. Effect of new tuberculosis diagnostic technologies on community-based intensified case finding: a multicentre randomized controlled trial. Lancet Infect Dis. 2017;17:441–50.CrossRef
20.
go back to reference Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003;83:91–7.CrossRef Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003;83:91–7.CrossRef
21.
go back to reference Flores LL, Steingart KR, Dendukuri N, et al. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin Vaccine Immunol. 2011;18:1616–27.CrossRef Flores LL, Steingart KR, Dendukuri N, et al. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin Vaccine Immunol. 2011;18:1616–27.CrossRef
22.
go back to reference Liu C, Zhao Z, Fan J, et al. Quantification of circulating Mycobacterium tuberculosis antigen peptides allows rapid diagnosis of active disease and treatment monitoring. Proc Natl Acad Sci. 2017;114:3969–74.CrossRef Liu C, Zhao Z, Fan J, et al. Quantification of circulating Mycobacterium tuberculosis antigen peptides allows rapid diagnosis of active disease and treatment monitoring. Proc Natl Acad Sci. 2017;114:3969–74.CrossRef
23.
go back to reference Liu C, Lyon CJ, Bu Y, et al. Clinical evaluation of a blood assay to diagnose paucibacillary tuberculosis via bacterial antigens. Clin Chem. 2018;64:791–800.CrossRef Liu C, Lyon CJ, Bu Y, et al. Clinical evaluation of a blood assay to diagnose paucibacillary tuberculosis via bacterial antigens. Clin Chem. 2018;64:791–800.CrossRef
24.
go back to reference Madhi SA, Nachman S, Violari A, et al. Primary isoniazid prophylaxis against tuberculosis in HIV-exposed children. N Engl J Med. 2011;365:21–31.CrossRef Madhi SA, Nachman S, Violari A, et al. Primary isoniazid prophylaxis against tuberculosis in HIV-exposed children. N Engl J Med. 2011;365:21–31.CrossRef
25.
go back to reference Graham SM, Cuevas LE, Jean-Philippe P, et al. Clinical case definitions for classification of intrathoracic tuberculosis in children: an update. Clin Infect Dis. 2015;61:S179–87.CrossRef Graham SM, Cuevas LE, Jean-Philippe P, et al. Clinical case definitions for classification of intrathoracic tuberculosis in children: an update. Clin Infect Dis. 2015;61:S179–87.CrossRef
27.
go back to reference Mahomed S, Padayatchi N, Singh J, et al. Precision medicine in resistant tuberculosis: treat the correct patient, at the correct time, with the correct drug. J Inf Secur. 2019;78:261–8. Mahomed S, Padayatchi N, Singh J, et al. Precision medicine in resistant tuberculosis: treat the correct patient, at the correct time, with the correct drug. J Inf Secur. 2019;78:261–8.
28.
go back to reference Friedrich SO, Rachow A, Saathoff E, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med. 2013;1:462–70.CrossRef Friedrich SO, Rachow A, Saathoff E, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med. 2013;1:462–70.CrossRef
29.
go back to reference Saunders MJ, Tovar MA, Collier D, et al. Active and passive case-finding in tuberculosis-affected households in Peru: a 10-year prospective cohort study. Lancet Infect Dis. 2019;19:519–28.CrossRef Saunders MJ, Tovar MA, Collier D, et al. Active and passive case-finding in tuberculosis-affected households in Peru: a 10-year prospective cohort study. Lancet Infect Dis. 2019;19:519–28.CrossRef
Metadata
Title
Evaluation of a serum-based antigen test for tuberculosis in HIV-exposed infants: a diagnostic accuracy study
Authors
Liyan Mao
Sylvia M. LaCourse
Soyeon Kim
Chang Liu
Bo Ning
Duran Bao
Jia Fan
Christopher J. Lyon
Ziyong Sun
Sharon Nachman
Charles D. Mitchell
Tony Y. Hu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-01983-w

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue