Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Helminths | Research article

Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans

Authors: Panthakarn Rangsinth, Anchalee Prasansuklab, Chatrawee Duangjan, Xiaojie Gu, Krai Meemon, Michael Wink, Tewin Tencomnao

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Caesalpinia mimosoides, a vegetable consumed in Thailand, has been reported to exhibit in vitro antioxidant properties. The in vivo antioxidant and anti-aging activities have not been investigated. The aim of this research was to study the antioxidant activity of C. mimosoides extracts in Caenorhabditis elegans, a widely used model organism in this context.

Methods

C. elegans were treated with C. mimosoides extracts in a various concentrations. To investigate the protective effects of the extract against oxidative stress, wild-type N2 were used to determine survival rate under oxidative stress and intracellular ROS. To study underlying mechanisms, the mutant strains with GFP reporter gene including TJ356, CF1553, EU1 and LD4 were used to study DAF-16, SOD-3, SKN-1 and GST-4 gene, respectively. Lifespan and aging pigment of the worms were also investigated.

Results

A leaf extract of C. mimosoides improved resistance to oxidative stress and reduced intracellular ROS accumulation in nematodes. The antioxidant effects were mediated through the DAF-16/FOXO pathway and SOD-3 expression, whereas the expression of SKN-1 and GST-4 were not altered. The extract also prolonged lifespan and decreased aging pigments, while the body length and brood size of the worms were not affected by the extract, indicating low toxicity and excluding dietary restriction.

Conclusions

The results of this study establish the antioxidant activity of C. mimosoides extract in vivo and suggest its potential as a dietary supplement and alternative medicine to defend against oxidative stress and aging, which should be investigated in intervention studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition (Burbank, Los Angeles County, Calif). 2002;18(10):872–9.CrossRef Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition (Burbank, Los Angeles County, Calif). 2002;18(10):872–9.CrossRef
2.
go back to reference Tambara AL, De Los Santos Moraes L, Dal Forno AH, Boldori JR, Goncalves Soares AT, De Freitas Rodrigues C, et al. Purple Pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018;120:639–50.CrossRef Tambara AL, De Los Santos Moraes L, Dal Forno AH, Boldori JR, Goncalves Soares AT, De Freitas Rodrigues C, et al. Purple Pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018;120:639–50.CrossRef
3.
go back to reference Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, et al. Role of ROS and Nutritional antioxidants in human diseases. Front Physiol. 2018;9:477.CrossRef Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, et al. Role of ROS and Nutritional antioxidants in human diseases. Front Physiol. 2018;9:477.CrossRef
4.
go back to reference Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.CrossRef Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.CrossRef
5.
go back to reference Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74(1):139–62.CrossRef Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74(1):139–62.CrossRef
6.
go back to reference Fridovich I. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann N Y Acad Sci. 1999;893:13–8.CrossRef Fridovich I. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann N Y Acad Sci. 1999;893:13–8.CrossRef
7.
go back to reference Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72.CrossRef Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72.CrossRef
8.
go back to reference Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005;92(3):491–7.CrossRef Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005;92(3):491–7.CrossRef
9.
go back to reference Yodsaoue O, Karalai C, Ponglimanont C, Tewtrakul S, Chantrapromma S. Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry. 2010;71(14–15):1756–64.CrossRef Yodsaoue O, Karalai C, Ponglimanont C, Tewtrakul S, Chantrapromma S. Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry. 2010;71(14–15):1756–64.CrossRef
10.
go back to reference Rattanata N, Klaynongsruang S, Daduang S, Tavichakorntrakool R, Limpaiboon T, Lekphrom R, et al. Inhibitory effects of Gallic acid isolated from Caesalpinia mimosoides Lamk on cholangiocarcinoma cell lines and foodborne pathogenic Bacteria. Asian Pacific journal of cancer prevention : APJCP. 2016;17(3):1341–5.CrossRef Rattanata N, Klaynongsruang S, Daduang S, Tavichakorntrakool R, Limpaiboon T, Lekphrom R, et al. Inhibitory effects of Gallic acid isolated from Caesalpinia mimosoides Lamk on cholangiocarcinoma cell lines and foodborne pathogenic Bacteria. Asian Pacific journal of cancer prevention : APJCP. 2016;17(3):1341–5.CrossRef
11.
go back to reference Chanwitheesuk A, Teerawutgulrag A, Kilburn JD, Rakariyatham N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007;100(3):1044–8.CrossRef Chanwitheesuk A, Teerawutgulrag A, Kilburn JD, Rakariyatham N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007;100(3):1044–8.CrossRef
12.
go back to reference Shankar S, Tanomrod N, Rawdkuen S, Rhim JW. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol. 2016;92:842–9.CrossRef Shankar S, Tanomrod N, Rawdkuen S, Rhim JW. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol. 2016;92:842–9.CrossRef
13.
go back to reference Partridge L, Gems D. Beyond the evolutionary theory of ageing, from functional genomics to evo-Gero. Trends Ecol Evol. 2006;21(6):334–40.CrossRef Partridge L, Gems D. Beyond the evolutionary theory of ageing, from functional genomics to evo-Gero. Trends Ecol Evol. 2006;21(6):334–40.CrossRef
14.
go back to reference Genome sequence of the nematode. C. elegans: a platform for investigating biology. Science (New York, NY). 1998;282(5396):2012–2018. Genome sequence of the nematode. C. elegans: a platform for investigating biology. Science (New York, NY). 1998;282(5396):2012–2018.
15.
go back to reference Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, Waterston RH. Genomics in C. elegans: so many genes, such a little worm. Genome Res. 2005;15(12):1651–60.CrossRef Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, Waterston RH. Genomics in C. elegans: so many genes, such a little worm. Genome Res. 2005;15(12):1651–60.CrossRef
16.
go back to reference Harris TW, Chen N, Cunningham F, Tello-Ruiz M, Antoshechkin I, Bastiani C, et al. WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res. 2004;32(Database issue):D411–7.CrossRef Harris TW, Chen N, Cunningham F, Tello-Ruiz M, Antoshechkin I, Bastiani C, et al. WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res. 2004;32(Database issue):D411–7.CrossRef
17.
go back to reference Kampkotter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y, Proksch P, et al. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative biochemistry and physiology Part B, Biochemistry & molecular biology. 2008;149(2):314–23.CrossRef Kampkotter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y, Proksch P, et al. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative biochemistry and physiology Part B, Biochemistry & molecular biology. 2008;149(2):314–23.CrossRef
18.
go back to reference Abbas S, Wink M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med. 2009;75(3):216–21.CrossRef Abbas S, Wink M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med. 2009;75(3):216–21.CrossRef
19.
go back to reference Peixoto H, Roxo M, Krstin S, Rohrig T, Richling E, Wink M. An anthocyanin-rich extract of acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. J Agric Food Chem. 2016;64(6):1283–90.CrossRef Peixoto H, Roxo M, Krstin S, Rohrig T, Richling E, Wink M. An anthocyanin-rich extract of acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. J Agric Food Chem. 2016;64(6):1283–90.CrossRef
20.
go back to reference Chen J, Zhang J, Xiang Y, Xiang L, Liu Y, He X, et al. Extracts of Tsai tai (Brassica chinensis): enhanced antioxidant activity and anti-aging effects both in vitro and in Caenorhabditis elegans. Food Funct. 2016;7(2):943–52.CrossRef Chen J, Zhang J, Xiang Y, Xiang L, Liu Y, He X, et al. Extracts of Tsai tai (Brassica chinensis): enhanced antioxidant activity and anti-aging effects both in vitro and in Caenorhabditis elegans. Food Funct. 2016;7(2):943–52.CrossRef
21.
go back to reference Prasansuklab A, Meemon K, Sobhon P, Tencomnao T. Ethanolic extract of Streblus asper leaves protects against glutamate-induced toxicity in HT22 hippocampal neuronal cells and extends lifespan of Caenorhabditis elegans. BMC Complement Altern Med. 2017;17(1):551.CrossRef Prasansuklab A, Meemon K, Sobhon P, Tencomnao T. Ethanolic extract of Streblus asper leaves protects against glutamate-induced toxicity in HT22 hippocampal neuronal cells and extends lifespan of Caenorhabditis elegans. BMC Complement Altern Med. 2017;17(1):551.CrossRef
22.
go back to reference Prasansuklab A, Theerasri A, Payne M, Ung AT, Tencomnao T. Acid-base fractions separated from Streblus asper leaf ethanolic extract exhibited antibacterial, antioxidant, anti-acetylcholinesterase, and neuroprotective activities. BMC Complement Altern Med. 2018;18(1):223.CrossRef Prasansuklab A, Theerasri A, Payne M, Ung AT, Tencomnao T. Acid-base fractions separated from Streblus asper leaf ethanolic extract exhibited antibacterial, antioxidant, anti-acetylcholinesterase, and neuroprotective activities. BMC Complement Altern Med. 2018;18(1):223.CrossRef
23.
go back to reference Prasansuklab A, Tencomnao T. Acanthus ebracteatus leaf extract provides neuronal cell protection against oxidative stress injury induced by glutamate. BMC Complement Altern Med. 2018;18(1):278.CrossRef Prasansuklab A, Tencomnao T. Acanthus ebracteatus leaf extract provides neuronal cell protection against oxidative stress injury induced by glutamate. BMC Complement Altern Med. 2018;18(1):278.CrossRef
24.
go back to reference Thabit S, Handoussa H, Roxo M, El Sayed NS, Cestari de Azevedo B, Wink M. Evaluation of antioxidant and neuroprotective activities of Cassia fistula (L.) using the Caenorhabditis elegans model. PeerJ. 2018;6:e5159.CrossRef Thabit S, Handoussa H, Roxo M, El Sayed NS, Cestari de Azevedo B, Wink M. Evaluation of antioxidant and neuroprotective activities of Cassia fistula (L.) using the Caenorhabditis elegans model. PeerJ. 2018;6:e5159.CrossRef
25.
go back to reference Inbaraj JJ, Chignell CF. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem Res Toxicol. 2004;17(1):55–62.CrossRef Inbaraj JJ, Chignell CF. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem Res Toxicol. 2004;17(1):55–62.CrossRef
26.
go back to reference Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods in molecular biology (Clifton, NJ). 2010;594:57–72.CrossRef Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods in molecular biology (Clifton, NJ). 2010;594:57–72.CrossRef
27.
go back to reference Strayer A, Wu Z, Christen Y, Link CD, Luo Y. Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2003;17(15):2305–7.CrossRef Strayer A, Wu Z, Christen Y, Link CD, Luo Y. Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2003;17(15):2305–7.CrossRef
28.
go back to reference Swindell WR. Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging. 2009;1(6):573–7.CrossRef Swindell WR. Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging. 2009;1(6):573–7.CrossRef
29.
go back to reference McElwee J, Bubb K, Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell. 2003;2(2):111–21.CrossRef McElwee J, Bubb K, Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell. 2003;2(2):111–21.CrossRef
30.
go back to reference Kim YJ. Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull. 2007;30(6):1052–5.CrossRef Kim YJ. Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull. 2007;30(6):1052–5.CrossRef
31.
go back to reference Palasap A, Limpaiboon T, Boonsiri P, Thapphasaraphong S, Daduang S, Suwannalert P, et al. Cytotoxic effects of Phytophenolics from Caesalpinia mimosoides Lamk on cervical carcinoma cell lines through an apoptotic pathway. Asian Pacific journal of cancer prevention : APJCP. 2014;15(1):449–54.CrossRef Palasap A, Limpaiboon T, Boonsiri P, Thapphasaraphong S, Daduang S, Suwannalert P, et al. Cytotoxic effects of Phytophenolics from Caesalpinia mimosoides Lamk on cervical carcinoma cell lines through an apoptotic pathway. Asian Pacific journal of cancer prevention : APJCP. 2014;15(1):449–54.CrossRef
32.
go back to reference Abbas S, Wink M. Green tea extract induces the resistance of Caenorhabditis elegans against oxidative stress. Antioxidants (Basel, Switzerland). 2014;3(1):129–43. Abbas S, Wink M. Green tea extract induces the resistance of Caenorhabditis elegans against oxidative stress. Antioxidants (Basel, Switzerland). 2014;3(1):129–43.
33.
go back to reference Peixoto H, Roxo M, Koolen H. Calycophyllum spruceanum (Benth.), the Amazonian "Tree of Youth" Prolongs Longevity and Enhances Stress Resistance in Caenorhabditis elegans. 2018;23(3). Peixoto H, Roxo M, Koolen H. Calycophyllum spruceanum (Benth.), the Amazonian "Tree of Youth" Prolongs Longevity and Enhances Stress Resistance in Caenorhabditis elegans. 2018;23(3).
34.
go back to reference Peixoto H, Roxo M, Rohrig T, Richling E, Wang X. Anti-Aging and Antioxidant Potential of Paullinia cupana var. sorbilis: Findings in Caenorhabditis elegans Indicate a New Utilization for Roasted Seeds of Guarana. 2017;4(3). Peixoto H, Roxo M, Rohrig T, Richling E, Wang X. Anti-Aging and Antioxidant Potential of Paullinia cupana var. sorbilis: Findings in Caenorhabditis elegans Indicate a New Utilization for Roasted Seeds of Guarana. 2017;4(3).
35.
go back to reference Mukhopadhyay A, Oh SW, Tissenbaum HA. Worming pathways to and from DAF-16/FOXO. Exp Gerontol. 2006;41(10):928–34.CrossRef Mukhopadhyay A, Oh SW, Tissenbaum HA. Worming pathways to and from DAF-16/FOXO. Exp Gerontol. 2006;41(10):928–34.CrossRef
36.
go back to reference Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. The Biochemical journal. 2008;409(1):205–13.CrossRef Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. The Biochemical journal. 2008;409(1):205–13.CrossRef
37.
go back to reference Choe KP, Przybysz AJ, Strange K. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol Cell Biol. 2009;29(10):2704–15.CrossRef Choe KP, Przybysz AJ, Strange K. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol Cell Biol. 2009;29(10):2704–15.CrossRef
38.
go back to reference Rezaizadehnajafi L, Wink M. EPs7630((R)) from Pelargonium sidoides increases stress resistance in Caenorhabditis elegans probably via the DAF-16/FOXO pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2014;21(4):547–50.CrossRef Rezaizadehnajafi L, Wink M. EPs7630((R)) from Pelargonium sidoides increases stress resistance in Caenorhabditis elegans probably via the DAF-16/FOXO pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2014;21(4):547–50.CrossRef
39.
go back to reference Chen W, Muller D, Richling E, Wink M. Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J Agric Food Chem. 2013;61(12):3047–53.CrossRef Chen W, Muller D, Richling E, Wink M. Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J Agric Food Chem. 2013;61(12):3047–53.CrossRef
40.
go back to reference Wang E, Wink M. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ. 2016;4:e1879.CrossRef Wang E, Wink M. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ. 2016;4:e1879.CrossRef
41.
go back to reference Zhu B, Yang P, Mammat N, Ding H, He J, Qian Y, et al. Aiweixin, a traditional Uyghur medicinal formula, protects against chromium toxicity in Caenorhabditis elegans. BMC Complement Altern Med. 2015;15:285.CrossRef Zhu B, Yang P, Mammat N, Ding H, He J, Qian Y, et al. Aiweixin, a traditional Uyghur medicinal formula, protects against chromium toxicity in Caenorhabditis elegans. BMC Complement Altern Med. 2015;15:285.CrossRef
42.
go back to reference Duangjan C, Rangsinth P, Gu X, Wink M, Tencomnao T. Lifespan extending and oxidative stress resistance properties of a leaf extracts from Anacardium occidentale L. in Caenorhabditis elegans. Oxidative Med Cell Longev. 2019;2019. Duangjan C, Rangsinth P, Gu X, Wink M, Tencomnao T. Lifespan extending and oxidative stress resistance properties of a leaf extracts from Anacardium occidentale L. in Caenorhabditis elegans. Oxidative Med Cell Longev. 2019;2019.
43.
go back to reference Kong Y, Trabucco SE, Zhang H. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip Top Gerontol. 2014;39:86–107.CrossRef Kong Y, Trabucco SE, Zhang H. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip Top Gerontol. 2014;39:86–107.CrossRef
44.
go back to reference Sohal RS, Brunk UT. Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol. 1989;266:17–26; discussion 7-9. Sohal RS, Brunk UT. Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol. 1989;266:17–26; discussion 7-9.
45.
go back to reference Clokey GV, Jacobson LA. The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev. 1986;35(1):79–94.CrossRef Clokey GV, Jacobson LA. The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev. 1986;35(1):79–94.CrossRef
46.
go back to reference Chen W, Rezaizadehnajafi L, Wink M. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans. J Pharm Pharmacol. 2013;65(5):682–8.CrossRef Chen W, Rezaizadehnajafi L, Wink M. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans. J Pharm Pharmacol. 2013;65(5):682–8.CrossRef
Metadata
Title
Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans
Authors
Panthakarn Rangsinth
Anchalee Prasansuklab
Chatrawee Duangjan
Xiaojie Gu
Krai Meemon
Michael Wink
Tewin Tencomnao
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Helminths
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2578-5

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue