Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Acid-base fractions separated from Streblus asper leaf ethanolic extract exhibited antibacterial, antioxidant, anti-acetylcholinesterase, and neuroprotective activities

Authors: Anchalee Prasansuklab, Atsadang Theerasri, Matthew Payne, Alison T. Ung, Tewin Tencomnao

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Streblus asper is a well-known plant native to Southeast Asia. Different parts of the plant have been traditionally used for various medicinal purposes. However, there is very little scientific evidence reporting its therapeutic benefits for potential treatment of Alzheimer’s disease (AD). The study aimed to evaluate antibacterial, antioxidant, acetylcholinesterase (AChE) inhibition, and neuroprotective properties of S. asper leaf extracts with the primary objective of enhancing therapeutic applications and facilitating activity-guided isolation of the active chemical constituents.

Methods

The leaves of S. asper were extracted in ethanol and subsequently fractionated into neutral, acid and base fractions. The phytochemical constituents of each fraction were analyzed using GC-MS. The antibacterial activity was evaluated using a broth microdilution method. The antioxidant activity was determined using DPPH and ABTS radical scavenging assays. The neuroprotective activity against glutamate-induced toxicity was tested on hippocampal neuronal HT22 cell line by evaluating the cell viability using MTT assay. The AChE inhibitory activity was screened by thin-layer chromatography (TLC) bioautographic method.

Results

The partition of the S. asper ethanolic leaf extract yielded the highest mass of phytochemical constitutions in the neutral fraction and the lowest in the basic fraction. Amongst the three fractions, the acidic fraction showed the strongest antibacterial activity against gram-positive bacteria. The antioxidant activities of three fractions were found in the order of acidic > basic > neutral, whereas the decreasing order of neuroprotective activity was neutral > basic > acidic. TLC bioautography revealed one component in the neutral fraction exhibited anti-AChE activity. While in the acid fraction, two components showed inhibitory activity against AChE. GC-MS analysis of three fractions showed the presence of major phytochemical constituents including terpenoids, steroids, phenolics, fatty acids, and lipidic plant hormone.

Conclusions

Our findings have demonstrated the therapeutic potential of three fractions extracted from S. asper leaves as a promising natural source for neuroprotective agents with additional actions of antibacterials and antioxidants, along with AChE inhibitors that will benefit in the development of new natural compounds in therapies against AD.
Literature
1.
go back to reference Ubel PA, Abernethy AP, Zafar SY. Full disclosure--out-of-pocket costs as side effects. N Engl J Med. 2013;369(16):1484–6.CrossRefPubMed Ubel PA, Abernethy AP, Zafar SY. Full disclosure--out-of-pocket costs as side effects. N Engl J Med. 2013;369(16):1484–6.CrossRefPubMed
2.
go back to reference Wang Z, Liu X, Ho RL, Lam CW, Chow MS. Precision or personalized medicine for Cancer chemotherapy: is there a role for herbal medicine. Molecules. 2016;21(7) Wang Z, Liu X, Ho RL, Lam CW, Chow MS. Precision or personalized medicine for Cancer chemotherapy: is there a role for herbal medicine. Molecules. 2016;21(7)
3.
go back to reference Augustine NR, Madhavan G, Nass SJ (Eds). Committee on Ensuring Patient Access to Affordable Drug Therapies; Board on Health Care Services; Health and Medicine Division; National Academies of Sciences, Engineering, and Medicine, Making Medicines Affordable A National Imperative. Washington (DC): National Academies Press (US); 2017. Augustine NR, Madhavan G, Nass SJ (Eds). Committee on Ensuring Patient Access to Affordable Drug Therapies; Board on Health Care Services; Health and Medicine Division; National Academies of Sciences, Engineering, and Medicine, Making Medicines Affordable A National Imperative. Washington (DC): National Academies Press (US); 2017.
4.
go back to reference Kroger E, Mouls M, Wilchesky M, Berkers M, Carmichael PH, van Marum R, et al. Adverse drug reactions reported with cholinesterase inhibitors: an analysis of 16 years of individual case safety reports from VigiBase. Ann Pharmacother 2015; 49(11):1197–1206. Kroger E, Mouls M, Wilchesky M, Berkers M, Carmichael PH, van Marum R, et al. Adverse drug reactions reported with cholinesterase inhibitors: an analysis of 16 years of individual case safety reports from VigiBase. Ann Pharmacother 2015; 49(11):1197–1206.
5.
go back to reference Shehab N, Patel PR, Srinivasan A, Budnitz DS. Emergency department visits for antibiotic-associated adverse events. Clin Infect Dis. 2008;47(6):735–43.CrossRefPubMed Shehab N, Patel PR, Srinivasan A, Budnitz DS. Emergency department visits for antibiotic-associated adverse events. Clin Infect Dis. 2008;47(6):735–43.CrossRefPubMed
6.
9.
10.
go back to reference Rex JH, Talbot GH, Goldberger MJ, Eisenstein BI, Echols RM, Tomayko JF, et al. Progress in the fight against multidrug-resistant Bacteria 2005-2016: modern noninferiority trial designs enable antibiotic development in advance of epidemic bacterial resistance. Clin Infect Dis 2017; 65(1):141–146. Rex JH, Talbot GH, Goldberger MJ, Eisenstein BI, Echols RM, Tomayko JF, et al. Progress in the fight against multidrug-resistant Bacteria 2005-2016: modern noninferiority trial designs enable antibiotic development in advance of epidemic bacterial resistance. Clin Infect Dis 2017; 65(1):141–146.
11.
go back to reference Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–61.CrossRefPubMed Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–61.CrossRefPubMed
12.
go back to reference Owen L, Laird K. Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Crit Rev Microbiol. 2018:1–22. Owen L, Laird K. Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Crit Rev Microbiol. 2018:1–22.
13.
go back to reference Akhondzadeh S, Abbasi SH. Herbal medicine in the treatment of Alzheimer's disease. Am J Alzheimers Dis Other Demen. 2006;21(2):113–8.CrossRefPubMed Akhondzadeh S, Abbasi SH. Herbal medicine in the treatment of Alzheimer's disease. Am J Alzheimers Dis Other Demen. 2006;21(2):113–8.CrossRefPubMed
15.
go back to reference Yang WT, Zheng XW, Chen S, Shan CS, Xu QQ, Zhu JZ, et al. Chinese herbal medicine for Alzheimer's disease: clinical evidence and possible mechanism of neurogenesis. Biochem Pharmacol 2017; 141:143–155. Yang WT, Zheng XW, Chen S, Shan CS, Xu QQ, Zhu JZ, et al. Chinese herbal medicine for Alzheimer's disease: clinical evidence and possible mechanism of neurogenesis. Biochem Pharmacol 2017; 141:143–155.
16.
go back to reference Syad AN, Devi K. Botanics: a potential source of new therapies for Alzheimer’s disease. Botanics. 2014;4:11–6. Syad AN, Devi K. Botanics: a potential source of new therapies for Alzheimer’s disease. Botanics. 2014;4:11–6.
17.
go back to reference Kumar A, Singh A, Aggarwal A. Therapeutic potentials of herbal drugs for Alzheimer’s disease - an overview. Indian J Exp Biol. 2017;55:63–73. Kumar A, Singh A, Aggarwal A. Therapeutic potentials of herbal drugs for Alzheimer’s disease - an overview. Indian J Exp Biol. 2017;55:63–73.
18.
go back to reference Zangara A. The psychopharmacology of huperzine a: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer's disease. Pharmacol Biochem Behav. 2003;75(3):675–86.CrossRefPubMed Zangara A. The psychopharmacology of huperzine a: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer's disease. Pharmacol Biochem Behav. 2003;75(3):675–86.CrossRefPubMed
19.
go back to reference Mazzanti G, Di Giacomo S. Curcumin and resveratrol in the Management of Cognitive Disorders: what is the clinical evidence? Molecules. 2016;21:9.CrossRef Mazzanti G, Di Giacomo S. Curcumin and resveratrol in the Management of Cognitive Disorders: what is the clinical evidence? Molecules. 2016;21:9.CrossRef
20.
go back to reference Suk K. Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids. Neurosignals. 2005;14(1–2):23–33.CrossRefPubMed Suk K. Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids. Neurosignals. 2005;14(1–2):23–33.CrossRefPubMed
21.
go back to reference Hugel HM. Brain food for Alzheimer-free ageing: focus on herbal medicines. Adv Exp Med Biol. 2015;863:95–116.CrossRefPubMed Hugel HM. Brain food for Alzheimer-free ageing: focus on herbal medicines. Adv Exp Med Biol. 2015;863:95–116.CrossRefPubMed
22.
go back to reference Abushouk AI, Negida A, Ahmed H, Abdel-Daim MM. Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: future applications in Parkinson's disease. Biomed Pharmacother. 2017;85:635–45.CrossRefPubMed Abushouk AI, Negida A, Ahmed H, Abdel-Daim MM. Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: future applications in Parkinson's disease. Biomed Pharmacother. 2017;85:635–45.CrossRefPubMed
23.
go back to reference Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv. 2017;35(2):178–216.CrossRefPubMed Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv. 2017;35(2):178–216.CrossRefPubMed
25.
go back to reference Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med. 2009;13(1):61–86.CrossRefPubMed Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med. 2009;13(1):61–86.CrossRefPubMed
26.
go back to reference Wenk GL. Neuropathologic changes in Alzheimer's disease: potential targets for treatment. J Clin Psychiatry. 2006;67(Suppl 3):3–7.PubMed Wenk GL. Neuropathologic changes in Alzheimer's disease: potential targets for treatment. J Clin Psychiatry. 2006;67(Suppl 3):3–7.PubMed
27.
28.
29.
go back to reference Bond M, Rogers G, Peters J, Anderson R, Hoyle M, Miners A, et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of technology appraisal no. 111): a systematic review and economic model. Health Technol Assess. 2012;16(21):1–470.CrossRefPubMedPubMedCentral Bond M, Rogers G, Peters J, Anderson R, Hoyle M, Miners A, et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of technology appraisal no. 111): a systematic review and economic model. Health Technol Assess. 2012;16(21):1–470.CrossRefPubMedPubMedCentral
30.
go back to reference Cacabelos R. Have there been improvements in Alzheimer’s disease drug discovery over the past 5 years? Expert Opin Drug Discov. 2018;13(6):523–38.CrossRefPubMed Cacabelos R. Have there been improvements in Alzheimer’s disease drug discovery over the past 5 years? Expert Opin Drug Discov. 2018;13(6):523–38.CrossRefPubMed
31.
go back to reference Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr Pharm Des. 2010;16(25):2766–78.CrossRefPubMed Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr Pharm Des. 2010;16(25):2766–78.CrossRefPubMed
32.
go back to reference Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D. Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy. Alzheimers Res Ther. 2010;2(1):1.CrossRefPubMedPubMedCentral Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D. Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy. Alzheimers Res Ther. 2010;2(1):1.CrossRefPubMedPubMedCentral
33.
go back to reference Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative Med Cell Longev. 2013;2013:316523. Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative Med Cell Longev. 2013;2013:316523.
34.
go back to reference Bibi F, Yasir M, Sohrab SS, Azhar EI, Al-Qahtani MH, Abuzenadah AM, et al. Link between chronic bacterial inflammation and Alzheimer disease. CNS Neurol Disord Drug Targets 2014; 13(7):1140–1147. Bibi F, Yasir M, Sohrab SS, Azhar EI, Al-Qahtani MH, Abuzenadah AM, et al. Link between chronic bacterial inflammation and Alzheimer disease. CNS Neurol Disord Drug Targets 2014; 13(7):1140–1147.
35.
go back to reference Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, et al. Microbes and Alzheimer's disease. J Alzheimers Dis 2016; 51(4):979–984. Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, et al. Microbes and Alzheimer's disease. J Alzheimers Dis 2016; 51(4):979–984.
36.
go back to reference Miklossy J, McGeer PL. Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY). 2016;8(4):575–88.CrossRef Miklossy J, McGeer PL. Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY). 2016;8(4):575–88.CrossRef
37.
go back to reference Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5(3):e9505. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5(3):e9505.
38.
go back to reference Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med 2016; 8(340):340ra372. Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med 2016; 8(340):340ra372.
39.
go back to reference Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7:41802. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7:41802.
40.
go back to reference Minter MR, Hinterleitner R, Meisel M, Zhang C, Leone V, Zhang X, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1DeltaE9 murine model of Alzheimer's disease. Sci Rep 2017; 7(1):10411. Minter MR, Hinterleitner R, Meisel M, Zhang C, Leone V, Zhang X, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1DeltaE9 murine model of Alzheimer's disease. Sci Rep 2017; 7(1):10411.
41.
go back to reference Emery DC, Shoemark DK, Batstone TE, Waterfall CM, Coghill JA, Cerajewska TL, et al. 16S rRNA next generation sequencing analysis shows Bacteria in Alzheimer's post-mortem brain. Front Aging Neurosci 2017; 9:195. Emery DC, Shoemark DK, Batstone TE, Waterfall CM, Coghill JA, Cerajewska TL, et al. 16S rRNA next generation sequencing analysis shows Bacteria in Alzheimer's post-mortem brain. Front Aging Neurosci 2017; 9:195.
42.
go back to reference Allen HB. Alzheimer's disease: assessing the role of spirochetes, biofilms, the immune system, and amyloid-beta with regard to potential treatment and prevention. J Alzheimers Dis. 2016;53(4):1271–6.CrossRefPubMedPubMedCentral Allen HB. Alzheimer's disease: assessing the role of spirochetes, biofilms, the immune system, and amyloid-beta with regard to potential treatment and prevention. J Alzheimers Dis. 2016;53(4):1271–6.CrossRefPubMedPubMedCentral
43.
go back to reference Hefendehl JK, LeDue J, Ko RW, Mahler J, Murphy TH, MacVicar BA. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Abeta plaques by iGluSnFR two-photon imaging. Nat Commun. 2016;7:13441.CrossRefPubMedPubMedCentral Hefendehl JK, LeDue J, Ko RW, Mahler J, Murphy TH, MacVicar BA. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Abeta plaques by iGluSnFR two-photon imaging. Nat Commun. 2016;7:13441.CrossRefPubMedPubMedCentral
44.
go back to reference Rastogi S, Kulshreshtha DK, Rawat AK. Streblus asper Lour. (Shakhotaka): a review of its chemical, pharmacological and Ethnomedicinal properties. Evid Based Complement Alternat Med. 2006;3(2):217–22.CrossRefPubMedPubMedCentral Rastogi S, Kulshreshtha DK, Rawat AK. Streblus asper Lour. (Shakhotaka): a review of its chemical, pharmacological and Ethnomedicinal properties. Evid Based Complement Alternat Med. 2006;3(2):217–22.CrossRefPubMedPubMedCentral
45.
go back to reference Verma NK, Singh SP, Singh AP, Singh R, Rai PK, Tripathi AK. A brief study on Strebulus asper L.-a review. RJP. 2015;1(2):65–71. Verma NK, Singh SP, Singh AP, Singh R, Rai PK, Tripathi AK. A brief study on Strebulus asper L.-a review. RJP. 2015;1(2):65–71.
46.
go back to reference Luanchoy S, Tiangkul S, Wongkrajang Y, Temsiririrkkul R, Peungvicha P, Nakornchai S. Antioxidant activity of a Thai traditional formula for longevity. Mahidol J Pharm Sci. 2014;41:1–5. Luanchoy S, Tiangkul S, Wongkrajang Y, Temsiririrkkul R, Peungvicha P, Nakornchai S. Antioxidant activity of a Thai traditional formula for longevity. Mahidol J Pharm Sci. 2014;41:1–5.
47.
go back to reference Ren Y, Chen W-L, Lantvit DD, Sass EJ, Shriwas P, Ninh TN, et al. Cardiac glycoside constituents of Streblus asper with potential antineoplastic activity. J Nat Prod 2016; 80(3):648–658. Ren Y, Chen W-L, Lantvit DD, Sass EJ, Shriwas P, Ninh TN, et al. Cardiac glycoside constituents of Streblus asper with potential antineoplastic activity. J Nat Prod 2016; 80(3):648–658.
48.
go back to reference Wongkham S, Laupattarakasaem P, Pienthaweechai K, Areejitranusorn P, Wongkham C, Techanitiswad T. Antimicrobial activity of Streblus asper leaf extract. Phytother Res. 2001;15(2):119–21.CrossRefPubMed Wongkham S, Laupattarakasaem P, Pienthaweechai K, Areejitranusorn P, Wongkham C, Techanitiswad T. Antimicrobial activity of Streblus asper leaf extract. Phytother Res. 2001;15(2):119–21.CrossRefPubMed
49.
go back to reference Das MK, Beuria MK. Anti-malarial property of an extract of the plant Streblus asper in murine malaria. Trans R Soc Trop Med Hyg. 1991;85(1):40–1.CrossRefPubMed Das MK, Beuria MK. Anti-malarial property of an extract of the plant Streblus asper in murine malaria. Trans R Soc Trop Med Hyg. 1991;85(1):40–1.CrossRefPubMed
50.
go back to reference Chatterjee RK, Fatma N, Murthy PK, Sinha P, Kulshrestha DK, Dhawan BN. Macrofilaricidal activity of the stembark of Streblus asper and its major active constituents. Drug Dev Res. 1992;26(1):67–78.CrossRef Chatterjee RK, Fatma N, Murthy PK, Sinha P, Kulshrestha DK, Dhawan BN. Macrofilaricidal activity of the stembark of Streblus asper and its major active constituents. Drug Dev Res. 1992;26(1):67–78.CrossRef
51.
go back to reference Sripanidkulchai B, Junlatat J, Wara-aswapati N, Hormdee D. Anti-inflammatory effect of Streblus asper leaf extract in rats and its modulation on inflammation-associated genes expression in RAW 264.7 macrophage cells. J Ethnopharmacol. 2009;124(3):566–70.CrossRefPubMed Sripanidkulchai B, Junlatat J, Wara-aswapati N, Hormdee D. Anti-inflammatory effect of Streblus asper leaf extract in rats and its modulation on inflammation-associated genes expression in RAW 264.7 macrophage cells. J Ethnopharmacol. 2009;124(3):566–70.CrossRefPubMed
52.
go back to reference Li J, Huang Y, Guan XL, Li J, Deng SP, Wu Q, et al. Anti-hepatitis B virus constituents from the stem bark of Streblus asper. Phytochemistry 2012; 82:100–109. Li J, Huang Y, Guan XL, Li J, Deng SP, Wu Q, et al. Anti-hepatitis B virus constituents from the stem bark of Streblus asper. Phytochemistry 2012; 82:100–109.
53.
go back to reference Singsai K, Akaravichien T, Kukongviriyapan V, Sattayasai J. Protective effects of Streblus asper leaf extract on H2O2-induced ROS in SK-N-SH cells and MPTP-induced Parkinson’s disease-like symptoms in C57BL/6 mouse. Evid Based Complement Alternat Med. 2015;2015:970354–9. Singsai K, Akaravichien T, Kukongviriyapan V, Sattayasai J. Protective effects of Streblus asper leaf extract on H2O2-induced ROS in SK-N-SH cells and MPTP-induced Parkinson’s disease-like symptoms in C57BL/6 mouse. Evid Based Complement Alternat Med. 2015;2015:970354–9.
54.
go back to reference Prasansuklab A, Meemon K, Sobhon P, Tencomnao T. Ethanolic extract of Streblus asper leaves protects against glutamate-induced toxicity in HT22 hippocampal neuronal cells and extends lifespan of Caenorhabditis elegans. BMC Complement Altern Med. 2017;17(1):551.CrossRefPubMedPubMedCentral Prasansuklab A, Meemon K, Sobhon P, Tencomnao T. Ethanolic extract of Streblus asper leaves protects against glutamate-induced toxicity in HT22 hippocampal neuronal cells and extends lifespan of Caenorhabditis elegans. BMC Complement Altern Med. 2017;17(1):551.CrossRefPubMedPubMedCentral
55.
go back to reference Iriyama K, Ogura N. Takamiya a. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. J Biochem. 1974;76(4):901–4.PubMed Iriyama K, Ogura N. Takamiya a. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. J Biochem. 1974;76(4):901–4.PubMed
56.
go back to reference Mungkornasawakul P, Pyne SG, Jatisatienr A, Supyen D, Lie W, Ung AT, et al. Stemocurtisine, the first pyrido[1,2-a]azapine Stemona alkaloid. J Nat Prod 2003; 66(7):980–982. Mungkornasawakul P, Pyne SG, Jatisatienr A, Supyen D, Lie W, Ung AT, et al. Stemocurtisine, the first pyrido[1,2-a]azapine Stemona alkaloid. J Nat Prod 2003; 66(7):980–982.
57.
go back to reference Marston A, Kissling J, Hostettmann K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem Anal. 2002;13(1):51–4.CrossRefPubMed Marston A, Kissling J, Hostettmann K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem Anal. 2002;13(1):51–4.CrossRefPubMed
58.
go back to reference Taweechaisupapong S, Wongkham S, Chareonsuk S, Suparee S, Srilalai P, Chaiyarak S. Selective activity of Streblus asper on Mutans streptococci. J Ethnopharmacol. 2000;70(1):73–9.CrossRefPubMed Taweechaisupapong S, Wongkham S, Chareonsuk S, Suparee S, Srilalai P, Chaiyarak S. Selective activity of Streblus asper on Mutans streptococci. J Ethnopharmacol. 2000;70(1):73–9.CrossRefPubMed
59.
go back to reference Taweechaisupapong S, Singhara S, Choopan T. Effect of Streblus asper leaf extract on selected anaerobic Bacteria. In: ISHS Acta Horticulturae 680: III WOCMAP congress on medicinal and aromatic plants, Vol. 6. Traditional medicine and nutraceuticals; 2005. p. 177–81. Taweechaisupapong S, Singhara S, Choopan T. Effect of Streblus asper leaf extract on selected anaerobic Bacteria. In: ISHS Acta Horticulturae 680: III WOCMAP congress on medicinal and aromatic plants, Vol. 6. Traditional medicine and nutraceuticals; 2005. p. 177–81.
60.
go back to reference Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28(3):603–661. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28(3):603–661.
61.
go back to reference Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005;579(23):5157–62.CrossRefPubMed Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005;579(23):5157–62.CrossRefPubMed
62.
go back to reference Asthana RK, Srivastava A, Kayastha AM, Nath G, Singh SP. Antibacterial potential of γ-linolenic acid from Fischerella sp. colonizing neem tree bark. World J Microbiol Biotechnol. 2006;22(5):443–8.CrossRef Asthana RK, Srivastava A, Kayastha AM, Nath G, Singh SP. Antibacterial potential of γ-linolenic acid from Fischerella sp. colonizing neem tree bark. World J Microbiol Biotechnol. 2006;22(5):443–8.CrossRef
63.
go back to reference Huang CB, George B, Ebersole JL. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch Oral Biol. 2010;55(8):555–60.CrossRefPubMedPubMedCentral Huang CB, George B, Ebersole JL. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch Oral Biol. 2010;55(8):555–60.CrossRefPubMedPubMedCentral
64.
go back to reference Desbois AP, Lawlor KC. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar Drugs. 2013;11(11):4544–57.CrossRefPubMedPubMedCentral Desbois AP, Lawlor KC. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar Drugs. 2013;11(11):4544–57.CrossRefPubMedPubMedCentral
65.
go back to reference Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer's disease. Biochim Biophys Acta. 2000;1502(1):139–44.CrossRefPubMed Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer's disease. Biochim Biophys Acta. 2000;1502(1):139–44.CrossRefPubMed
66.
go back to reference Gadidasu K, Reddy ARN, Umate P, Reddy YN. Antioxidant and anti-diabetic activities from leaf extracts of Streblus asper Lour. Biotechnol Ind J. 2009;3(4):231–5. Gadidasu K, Reddy ARN, Umate P, Reddy YN. Antioxidant and anti-diabetic activities from leaf extracts of Streblus asper Lour. Biotechnol Ind J. 2009;3(4):231–5.
67.
go back to reference Ibrahim NM, Mat I, Lim V, Ahmad R. Antioxidant activity and phenolic content of Streblus asper leaves from various drying methods. Antioxidants (Basel). 2013;2(3):156–66.CrossRef Ibrahim NM, Mat I, Lim V, Ahmad R. Antioxidant activity and phenolic content of Streblus asper leaves from various drying methods. Antioxidants (Basel). 2013;2(3):156–66.CrossRef
68.
go back to reference Kumar RS, Kar B, Dolai N, Bala A, Haldar PK. Evaluation of antihyperglycemic and antioxidant properties of Streblus asper Lour against streptozotocin–induced diabetes in rats. Asian Pac J Trop Dis. 2012;2(2):139–43.CrossRef Kumar RS, Kar B, Dolai N, Bala A, Haldar PK. Evaluation of antihyperglycemic and antioxidant properties of Streblus asper Lour against streptozotocin–induced diabetes in rats. Asian Pac J Trop Dis. 2012;2(2):139–43.CrossRef
69.
go back to reference Kumar RB, Kar B, Dolai N, Karmakar I, Haldar S, Bhattacharya S, et al. Antitumor activity and antioxidant role of Streblus asper bark against Ehrlich ascites carcinoma in Swiss albino mice. J Exp Ther Oncol 2013; 10(3):197–202. Kumar RB, Kar B, Dolai N, Karmakar I, Haldar S, Bhattacharya S, et al. Antitumor activity and antioxidant role of Streblus asper bark against Ehrlich ascites carcinoma in Swiss albino mice. J Exp Ther Oncol 2013; 10(3):197–202.
70.
go back to reference Kumar RB, Kar B, Dolai N, Karmakar I, Bhattacharya S, Haldar PK. Antitumor activity and antioxidant status of Streblus asper bark against Dalton's ascitic lymphoma in mice. Interdiscip Toxicol. 2015;8(3):125–30.CrossRefPubMedPubMedCentral Kumar RB, Kar B, Dolai N, Karmakar I, Bhattacharya S, Haldar PK. Antitumor activity and antioxidant status of Streblus asper bark against Dalton's ascitic lymphoma in mice. Interdiscip Toxicol. 2015;8(3):125–30.CrossRefPubMedPubMedCentral
71.
go back to reference Lachman J, Šulc M, Schilla M. Comparison of the total antioxidant status of bohemian wines during the wine-making process. Food Chem. 2007;103(3):802–7.CrossRef Lachman J, Šulc M, Schilla M. Comparison of the total antioxidant status of bohemian wines during the wine-making process. Food Chem. 2007;103(3):802–7.CrossRef
72.
go back to reference Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal. 2011;24(7):1043–8.CrossRef Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal. 2011;24(7):1043–8.CrossRef
73.
go back to reference Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci Biobehav Rev. 2011;35(6):1397–409.CrossRefPubMed Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci Biobehav Rev. 2011;35(6):1397–409.CrossRefPubMed
74.
go back to reference Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem. 2001;1(6):497–506.CrossRefPubMed Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem. 2001;1(6):497–506.CrossRefPubMed
75.
go back to reference Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int. 2007;51(6–7):333–55.CrossRefPubMedPubMedCentral Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int. 2007;51(6–7):333–55.CrossRefPubMedPubMedCentral
76.
go back to reference Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci. 2015;9:91.CrossRefPubMedPubMedCentral Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci. 2015;9:91.CrossRefPubMedPubMedCentral
Metadata
Title
Acid-base fractions separated from Streblus asper leaf ethanolic extract exhibited antibacterial, antioxidant, anti-acetylcholinesterase, and neuroprotective activities
Authors
Anchalee Prasansuklab
Atsadang Theerasri
Matthew Payne
Alison T. Ung
Tewin Tencomnao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2288-4

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue