Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS

Authors: Tinotenda Shoko, Vinesh J. Maharaj, Dashnie Naidoo, Malefa Tselanyane, Rudzani Nthambeleni, Eric Khorombi, Zeno Apostolides

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Degradation of components of the extracellular matrix such as elastin and collagen by elastase and collagenase accelerates skin aging. Phytochemicals that inhibit the activity of these enzymes can be developed as anti-aging ingredients. In this study, an investigation of the anti-aging properties of Sclerocarya birrea (A. Rich.) Hochst (Marula) extracts was conducted in vitro with the aim of developing chemically characterized anti-aging ingredients.

Methods

Marula stems, leaves and fruits were extracted using methanol:dichloromethane (DCM) (1:1). The stems were later extracted using acetone, ethanol, methanol:DCM (1:1) and sequentially using hexane, DCM, ethyl acetate and methanol. The stem ethanol extract was defatted and concentrated. Elastase and collagenase inhibition activities of these extracts and Marula oil were determined using spectrophotometric methods. The chemical profile of the ethanolic stem extract was developed using Ultra-performance-liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) with MassLynx software. Pure standards were used to confirm the identity of major compounds and were screened for anti-elastase and anti-collagenase activity.

Results

Marula stems extracts were the most active as they exhibited anti-elastase activity comparable to that of elafin (> 88%) and anti-collagenase activity as potent as EDTA (> 76%). The leaf extract had moderate anti-elastase activity (54%) but was inactive agains collagenase. Marula fruits and oil exhibited limited activity in both assays. The ethanolic extract of Marula stems was the most suitable based on its acceptability to the cosmetic industry and its anti-collagenase activity (99%). Defatting and concentration improved its antiaging activity and lowered the colour intensity. Six compounds have been tentatively identified in the chemical profile of the ethanolic extract of Marula stems of which four; quinic acid, catechin, epigallocatechin gallate and epicatechin gallate have been confirmed using pure standards. Epigallocatechin gallate and epicatechin gallate were as potent (p < 0.05) as EDTA at 5 μg/ml in the anti-collagenase assay.

Conclusions

The ethanolic extract of Marula stems can be developed into an anti-aging ingredient as it exhibited very good in vitro anti-aging activity and its chemical profile has been developed. Epicatechin gallate and epigallocatechin gallate contribute to the anti-aging activity of Marula stem ethanol extract.
Appendix
Available only for authorised users
Literature
1.
go back to reference Varani J, Warner RL, Gharaee-Kermani M, Phan SH, Kang S, Chung J, Wang Z, Datta SC, Fisher GJ, Voorhees JJ. Vitamin a antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin1. J Invest Dermatol. 2000;114(3):480–6.CrossRefPubMed Varani J, Warner RL, Gharaee-Kermani M, Phan SH, Kang S, Chung J, Wang Z, Datta SC, Fisher GJ, Voorhees JJ. Vitamin a antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin1. J Invest Dermatol. 2000;114(3):480–6.CrossRefPubMed
2.
go back to reference Maity N, Nema NK, Abedy MK, Sarkar BK, Mukherjee PK. Exploring Tagetes Erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J Ethnopharmacol. 2011;137(3):1300–5.CrossRefPubMed Maity N, Nema NK, Abedy MK, Sarkar BK, Mukherjee PK. Exploring Tagetes Erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J Ethnopharmacol. 2011;137(3):1300–5.CrossRefPubMed
3.
go back to reference Süntar I, Akkol EK, Keles H, Yesilada E, Sarker SD, Baykal T. Comparative evaluation of traditional prescriptions from Cichorium Intybus L. for wound healing: stepwise isolation of an active component by in vivo bioassay and its mode of activity. J Ethnopharmacol. 2012;143(1):299–309.CrossRefPubMed Süntar I, Akkol EK, Keles H, Yesilada E, Sarker SD, Baykal T. Comparative evaluation of traditional prescriptions from Cichorium Intybus L. for wound healing: stepwise isolation of an active component by in vivo bioassay and its mode of activity. J Ethnopharmacol. 2012;143(1):299–309.CrossRefPubMed
4.
go back to reference Takeshi D, Sansei N, Yoshihisa N. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol Sin. 2001;22:1057–70. Takeshi D, Sansei N, Yoshihisa N. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol Sin. 2001;22:1057–70.
5.
go back to reference Eloff JN. Antibacterial activity of Marula (Sclerocarya Birrea (a. Rich.) Hochst. Subsp. caffra (Sond.) Kokwaro) (Anacardiaceae) bark and leaves. J Ethnopharmacol. 2001;76(3):305–8.CrossRefPubMed Eloff JN. Antibacterial activity of Marula (Sclerocarya Birrea (a. Rich.) Hochst. Subsp. caffra (Sond.) Kokwaro) (Anacardiaceae) bark and leaves. J Ethnopharmacol. 2001;76(3):305–8.CrossRefPubMed
6.
go back to reference Shackleton SE, Shackleton CM, Cunningham T, Lombard C, Sullivan CA, Netshiluvhi TR. Knowledge on Sclerocarya Birrea subsp. caffra with emphasis on its importance as a non-timber forest product in south and southern Mrica: a summary: part 1: taxonomy, ecology and role in rural livelihoods. SAFJ. 2002;194(1):27–41. Shackleton SE, Shackleton CM, Cunningham T, Lombard C, Sullivan CA, Netshiluvhi TR. Knowledge on Sclerocarya Birrea subsp. caffra with emphasis on its importance as a non-timber forest product in south and southern Mrica: a summary: part 1: taxonomy, ecology and role in rural livelihoods. SAFJ. 2002;194(1):27–41.
7.
go back to reference Komane B, Vermaak I, Summers B, Viljoen A. Safety and efficacy of Sclerocarya Birrea (a. Rich.) Hochst (Marula) oil: a clinical perspective. J Ethnopharmacol. 2015;176:327–35.CrossRefPubMed Komane B, Vermaak I, Summers B, Viljoen A. Safety and efficacy of Sclerocarya Birrea (a. Rich.) Hochst (Marula) oil: a clinical perspective. J Ethnopharmacol. 2015;176:327–35.CrossRefPubMed
8.
go back to reference Mckenzie LP. Topical composition for the treatment of scar tissue. 2003. Patent No WO 03/092634 A2. Mckenzie LP. Topical composition for the treatment of scar tissue. 2003. Patent No WO 03/092634 A2.
9.
go back to reference Charlier DCP, Raynard M, Lombard CN: Antioxidants based on Anacardiaceae species, methods for obtaining same and uses thereof. 2006. Patent No WO 2006/097806 A1. Charlier DCP, Raynard M, Lombard CN: Antioxidants based on Anacardiaceae species, methods for obtaining same and uses thereof. 2006. Patent No WO 2006/097806 A1.
10.
go back to reference Lall N, Kishore N. Are plants used for skin care in South Africa fully explored? J Ethnopharmacol. 2014;153(1):61–84.CrossRefPubMed Lall N, Kishore N. Are plants used for skin care in South Africa fully explored? J Ethnopharmacol. 2014;153(1):61–84.CrossRefPubMed
11.
go back to reference Hillman Z, Mizrahi Y, Beit-Yannai E. Evaluation of valuable nutrients in selected genotypes of marula (Sclerocarya Birrea Ssp. Caffra). Sci Hort. 2008;117(4):321–8.CrossRef Hillman Z, Mizrahi Y, Beit-Yannai E. Evaluation of valuable nutrients in selected genotypes of marula (Sclerocarya Birrea Ssp. Caffra). Sci Hort. 2008;117(4):321–8.CrossRef
12.
go back to reference Singh SK, Jha SK, Chaudhary A, Yadava R, Rai S. Quality control of herbal medicines by using spectroscopic techniques and multivariate statistical analysis. Pharm Biol. 2010;48(2):134–41.CrossRefPubMed Singh SK, Jha SK, Chaudhary A, Yadava R, Rai S. Quality control of herbal medicines by using spectroscopic techniques and multivariate statistical analysis. Pharm Biol. 2010;48(2):134–41.CrossRefPubMed
13.
go back to reference Liang Y-Z, Xie P, Chan K. Quality control of herbal medicines. J Chromatogr B. 2004;812(1):53–70.CrossRef Liang Y-Z, Xie P, Chan K. Quality control of herbal medicines. J Chromatogr B. 2004;812(1):53–70.CrossRef
14.
go back to reference Russo D, Kenny O, Smyth TJ, Milella L, Hossain MB, Diop MS, Rai DK, Brunton NP. Profiling of phytochemicals in tissues from Sclerocarya Birrea by HPLC-MS and their link with antioxidant activity. ISRN Chromatogr. 2013;2013:1–11. Russo D, Kenny O, Smyth TJ, Milella L, Hossain MB, Diop MS, Rai DK, Brunton NP. Profiling of phytochemicals in tissues from Sclerocarya Birrea by HPLC-MS and their link with antioxidant activity. ISRN Chromatogr. 2013;2013:1–11.
15.
go back to reference Jiménez-Sánchez C, Lozano-Sánchez J, Gabaldón-Hernández JA, Segura-Carretero A, Fernández-Gutiérrez A. RP-HPLC–ESI–QTOF/MS2 based strategy for the comprehensive metabolite profiling of Sclerocarya Birrea (Marula) bark. Ind Crop Prod. 2015;71:214–34.CrossRef Jiménez-Sánchez C, Lozano-Sánchez J, Gabaldón-Hernández JA, Segura-Carretero A, Fernández-Gutiérrez A. RP-HPLC–ESI–QTOF/MS2 based strategy for the comprehensive metabolite profiling of Sclerocarya Birrea (Marula) bark. Ind Crop Prod. 2015;71:214–34.CrossRef
16.
go back to reference Row KH, Jin Y. Recovery of catechin compounds from Korean tea by solvent extraction. Bioresour Technol. 2006;97(5):790–3.CrossRefPubMed Row KH, Jin Y. Recovery of catechin compounds from Korean tea by solvent extraction. Bioresour Technol. 2006;97(5):790–3.CrossRefPubMed
17.
go back to reference Kraunsoe JA, Claridge TD, Lowe G. Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic trypsin inhibitor. Biochemist. 1996;35(28):9090–6.CrossRef Kraunsoe JA, Claridge TD, Lowe G. Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic trypsin inhibitor. Biochemist. 1996;35(28):9090–6.CrossRef
18.
go back to reference Moore S, Stein WH. Photometric nin-hydrin method for use in the ehromatography of amino acids. J Biol Chem. 1948;176:367–88.PubMed Moore S, Stein WH. Photometric nin-hydrin method for use in the ehromatography of amino acids. J Biol Chem. 1948;176:367–88.PubMed
19.
go back to reference Mandl I, JD ML, Howes EL, RH DB, Sohler A. Isolation and characterization of proteinase and collagenase from Cl. Histolyticum. J Clin Invest. 1953;32(12):1323.CrossRefPubMedPubMedCentral Mandl I, JD ML, Howes EL, RH DB, Sohler A. Isolation and characterization of proteinase and collagenase from Cl. Histolyticum. J Clin Invest. 1953;32(12):1323.CrossRefPubMedPubMedCentral
20.
go back to reference Kroes R, Renwick AG, Feron V, Galli CL, Gibney M, Greim H, Guy RH, Lhuguenot JC, van de Sandt JJM. Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients. Food Chem Toxicol. 2007;45(12):2533–62.CrossRefPubMed Kroes R, Renwick AG, Feron V, Galli CL, Gibney M, Greim H, Guy RH, Lhuguenot JC, van de Sandt JJM. Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients. Food Chem Toxicol. 2007;45(12):2533–62.CrossRefPubMed
21.
go back to reference Mariod AA, Matthäus B, Hussein IH. Antioxidant properties of methanolic extracts from different parts of Sclerocarya Birrea. IJFST. 2008;43(5):921–6.CrossRef Mariod AA, Matthäus B, Hussein IH. Antioxidant properties of methanolic extracts from different parts of Sclerocarya Birrea. IJFST. 2008;43(5):921–6.CrossRef
22.
go back to reference Sartor L, Pezzato E, Garbisa S. (−) Epigallocatechin-3-gallate inhibits leukocyte elastase: potential of the phyto-factor in hindering inflammation, emphysema, and invasion. J Leukoc Biol. 2002;71(1):73–9.PubMed Sartor L, Pezzato E, Garbisa S. (−) Epigallocatechin-3-gallate inhibits leukocyte elastase: potential of the phyto-factor in hindering inflammation, emphysema, and invasion. J Leukoc Biol. 2002;71(1):73–9.PubMed
23.
go back to reference Makimura M, Hirasawa M, Kobayashi K, Indo J, Sakanaka S, Taguchi T, Otake S. Inhibitory effect of tea catechins on collagenase activity. J Periodontol. 1993;64(7):630–6.CrossRefPubMed Makimura M, Hirasawa M, Kobayashi K, Indo J, Sakanaka S, Taguchi T, Otake S. Inhibitory effect of tea catechins on collagenase activity. J Periodontol. 1993;64(7):630–6.CrossRefPubMed
24.
go back to reference Demeule M, Brossard M, Pagé M, Gingras D, Béliveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta. 2000;1478(1):51–60.CrossRefPubMed Demeule M, Brossard M, Pagé M, Gingras D, Béliveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta. 2000;1478(1):51–60.CrossRefPubMed
25.
go back to reference Melzig M, Löser B, Ciesielski S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Die Pharmazie. 2001;56(12):967–70.PubMed Melzig M, Löser B, Ciesielski S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Die Pharmazie. 2001;56(12):967–70.PubMed
26.
go back to reference Teramachi F, Koyano T, Kowithayakorn T, Hayashi M, Komiyama K, Ishibashi M. Collagenase inhibitory Quinic acid esters from ipomoea p es-caprae. J Nat Prod. 2005;68(5):794–6.CrossRefPubMed Teramachi F, Koyano T, Kowithayakorn T, Hayashi M, Komiyama K, Ishibashi M. Collagenase inhibitory Quinic acid esters from ipomoea p es-caprae. J Nat Prod. 2005;68(5):794–6.CrossRefPubMed
27.
go back to reference Madhan B, Krishnamoorthy G, Rao JR, Nair BU. Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. Int J Biol Macromol. 2007;41(1):16–22.CrossRefPubMed Madhan B, Krishnamoorthy G, Rao JR, Nair BU. Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. Int J Biol Macromol. 2007;41(1):16–22.CrossRefPubMed
28.
go back to reference Xu G-H, Kim Y-H, Choo S-J, Ryoo I-J, Yoo J-K, Ahn J-S, Yoo I-D. Chemical constituents from the leaves of Ilex Paraguariensis inhibit human neutrophil elastase. Arch Pharm Res. 2009;32(9):1215–20.CrossRefPubMed Xu G-H, Kim Y-H, Choo S-J, Ryoo I-J, Yoo J-K, Ahn J-S, Yoo I-D. Chemical constituents from the leaves of Ilex Paraguariensis inhibit human neutrophil elastase. Arch Pharm Res. 2009;32(9):1215–20.CrossRefPubMed
29.
go back to reference Hrenn A, Steinbrecher T, Labahn A, Schwager J, Schempp CM, Merfort I. Plant phenolics inhibit neutrophil elastase. Planta Med. 2006;72(12):1127–31.CrossRefPubMed Hrenn A, Steinbrecher T, Labahn A, Schwager J, Schempp CM, Merfort I. Plant phenolics inhibit neutrophil elastase. Planta Med. 2006;72(12):1127–31.CrossRefPubMed
30.
go back to reference Saldanha LL, Vilegas W, Dokkedal AL. Characterization of flavonoids and phenolic acids in Myrcia Bella cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules. 2013;18(7):8402–16.CrossRefPubMed Saldanha LL, Vilegas W, Dokkedal AL. Characterization of flavonoids and phenolic acids in Myrcia Bella cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules. 2013;18(7):8402–16.CrossRefPubMed
Metadata
Title
Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS
Authors
Tinotenda Shoko
Vinesh J. Maharaj
Dashnie Naidoo
Malefa Tselanyane
Rudzani Nthambeleni
Eric Khorombi
Zeno Apostolides
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2112-1

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue