Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2019

Open Access 01-12-2019 | Idiopathic Pulmonary Fibrosis | Research article

The acoustic characteristics of fine crackles predict honeycombing on high-resolution computed tomography

Authors: Toshikazu Fukumitsu, Yasushi Obase, Yuji Ishimatsu, Shota Nakashima, Hiroshi Ishimoto, Noriho Sakamoto, Kosei Nishitsuji, Shunpei Shiwa, Tomoya Sakai, Sueharu Miyahara, Kazuto Ashizawa, Hiroshi Mukae, Ryo Kozu

Published in: BMC Pulmonary Medicine | Issue 1/2019

Login to get access

Abstract

Background

Honeycombing on high-resolution computed tomography (HRCT) is a distinguishing feature of usual interstitial pneumonia and predictive of poor outcome in interstitial lung diseases (ILDs). Although fine crackles are common in ILD patients, the relationship between their acoustic features and honeycombing on HRCT has not been well characterized.

Methods

Lung sounds were digitally recorded from 71 patients with fine crackles and ILD findings on chest HRCT. Lung sounds were analyzed by fast Fourier analysis using a sound spectrometer (Easy-LSA; Fukuoka, Japan). The relationships between the acoustic features of fine crackles in inspiration phases (onset timing, number, frequency parameters, and time-expanded waveform parameters) and honeycombing in HRCT were investigated using multivariate logistic regression analysis.

Results

On analysis, the presence of honeycombing on HRCT was independently associated with onset timing (early vs. not early period; odds ratios [OR] 10.407, 95% confidence interval [95% CI] 1.366–79.298, P = 0.024), F99 value (the percentile frequency below which 99% of the total signal power is accumulated) (unit Hz = 100; OR 5.953, 95% CI 1.221–28.317, P = 0.029), and number of fine crackles in the inspiratory phase (unit number = 5; OR 4.256, 95% CI 1.098–16.507, P = 0.036). In the receiver-operating characteristic curves for number of crackles and F99 value, the cutoff levels for predicting the presence of honeycombing on HRCT were calculated as 13.2 (area under the curve [AUC], 0.913; sensitivity, 95.8%; specificity, 75.6%) and 752 Hz (AUC, 0.911; sensitivity, 91.7%; specificity, 85.2%), respectively. The multivariate logistic regression analysis additionally using these cutoff values revealed an independent association of number of fine crackles in the inspiratory phase, F99 value, and onset timing with the presence of honeycombing (OR 33.907, 95% CI 2.576–446.337, P = 0.007; OR 19.397, 95% CI 2.311–162.813, P = 0.006; and OR 12.383, 95% CI 1.443–106.293, P = 0.022; respectively).

Conclusions

The acoustic properties of fine crackles distinguish the honeycombing from the non-honeycombing group. Furthermore, onset timing, number of crackles in the inspiratory phase, and F99 value of fine crackles were independently associated with the presence of honeycombing on HRCT. Thus, auscultation routinely performed in clinical settings combined with a respiratory sound analysis may be predictive of the presence of honeycombing on HRCT.
Literature
1.
go back to reference Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44–68.CrossRef Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44–68.CrossRef
2.
go back to reference Nakagawa H, Nagatani Y, Takahashi M, Ogawa E, Tho NV, Ryujin Y, et al. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: correlations with pulmonary function tests. Eur J Radiol. 2016;85:125–30.CrossRef Nakagawa H, Nagatani Y, Takahashi M, Ogawa E, Tho NV, Ryujin Y, et al. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: correlations with pulmonary function tests. Eur J Radiol. 2016;85:125–30.CrossRef
3.
go back to reference Park IN, Jegal Y, Kim DS, Do KH, Yoo B, Shim TS, et al. Clinical course and lung function change of idiopathic nonspecific interstitial pneumonia. Eur Respir J. 2009;33:68–76.CrossRef Park IN, Jegal Y, Kim DS, Do KH, Yoo B, Shim TS, et al. Clinical course and lung function change of idiopathic nonspecific interstitial pneumonia. Eur Respir J. 2009;33:68–76.CrossRef
4.
go back to reference Walsh SL, Sverzellati N, Devaraj A, Keir GJ, Wells AU, Hansell DM. Connective tissue disease related fibrotic lung disease: high resolution computed tomographic and pulmonary function indices as prognostic determinants. Thorax. 2014;69:216–22.CrossRef Walsh SL, Sverzellati N, Devaraj A, Keir GJ, Wells AU, Hansell DM. Connective tissue disease related fibrotic lung disease: high resolution computed tomographic and pulmonary function indices as prognostic determinants. Thorax. 2014;69:216–22.CrossRef
5.
go back to reference Epler GR, Carrington CB, Gaensler EA. Crackles (rales) in the interstitial pulmonary diseases. Chest. 1978;73:333–9.CrossRef Epler GR, Carrington CB, Gaensler EA. Crackles (rales) in the interstitial pulmonary diseases. Chest. 1978;73:333–9.CrossRef
6.
go back to reference Sellarés J, Hernández-González F, Lucena CM, Paradela M, Brito-Zerón P, Prieto-González S, et al. Auscultation of Velcro crackles is associated with usual interstitial pneumonia. Medicine (Baltimore). 2016;95:e2573.CrossRef Sellarés J, Hernández-González F, Lucena CM, Paradela M, Brito-Zerón P, Prieto-González S, et al. Auscultation of Velcro crackles is associated with usual interstitial pneumonia. Medicine (Baltimore). 2016;95:e2573.CrossRef
7.
go back to reference Sgalla G, Walsh SLF, Sverzellati N, Fletcher S, Cerri S, Dimitrov B, et al. “Velcro-type” crackles predict specific radiologic features of fibrotic interstitial lung disease. BMC Pulm Med. 2018;18:103.CrossRef Sgalla G, Walsh SLF, Sverzellati N, Fletcher S, Cerri S, Dimitrov B, et al. “Velcro-type” crackles predict specific radiologic features of fibrotic interstitial lung disease. BMC Pulm Med. 2018;18:103.CrossRef
8.
go back to reference Cottin V, Richeldi L. Neglected evidence in idiopathic pulmonary fibrosis and the importance of early diagnosis and treatment. Eur Respir Rev. 2014;23:106–10.CrossRef Cottin V, Richeldi L. Neglected evidence in idiopathic pulmonary fibrosis and the importance of early diagnosis and treatment. Eur Respir Rev. 2014;23:106–10.CrossRef
9.
go back to reference Charbonneau G, Ademovic E, Cheetham BMG, Malmberg LP, Vanderschoot J, Sovijärvi ARA. Basic techniques for respiratory sound analysis. Eur Respir Rev. 2000;10:625–35. Charbonneau G, Ademovic E, Cheetham BMG, Malmberg LP, Vanderschoot J, Sovijärvi ARA. Basic techniques for respiratory sound analysis. Eur Respir Rev. 2000;10:625–35.
10.
go back to reference Shimoda T, Obase Y, Nagasaka Y, Nakano H, Kishikawa R, Iwanaga T. Lung sound analysis and airway inflammation in bronchial asthma. J Allergy Clin Immunol Pract. 2016;4:505–11.CrossRef Shimoda T, Obase Y, Nagasaka Y, Nakano H, Kishikawa R, Iwanaga T. Lung sound analysis and airway inflammation in bronchial asthma. J Allergy Clin Immunol Pract. 2016;4:505–11.CrossRef
11.
go back to reference Shimoda T, Obase Y, Nagasaka Y, Asai S. Phenotype classification using the combination of lung sound analysis and fractional exhaled nitric oxide for evaluating asthma treatment. Allergol Int. 2018;67:253–8.CrossRef Shimoda T, Obase Y, Nagasaka Y, Asai S. Phenotype classification using the combination of lung sound analysis and fractional exhaled nitric oxide for evaluating asthma treatment. Allergol Int. 2018;67:253–8.CrossRef
12.
go back to reference Malmberg LP, Sovijärvi AR, Paajanen E, Piirilä P, Haahtela T, Katila T. Changes in frequency spectra of breath sounds during histamine challenge test in adult asthmatics and healthy control subjects. Chest. 1994;105:122–31.CrossRef Malmberg LP, Sovijärvi AR, Paajanen E, Piirilä P, Haahtela T, Katila T. Changes in frequency spectra of breath sounds during histamine challenge test in adult asthmatics and healthy control subjects. Chest. 1994;105:122–31.CrossRef
13.
go back to reference Tabata H, Hirayama M, Enseki M, Nukaga M, Hirai K, Furuya H, et al. A novel method for detecting airway narrowing using breath sound spectrum analysis in children. Respir Investig. 2016;54:20–8.CrossRef Tabata H, Hirayama M, Enseki M, Nukaga M, Hirai K, Furuya H, et al. A novel method for detecting airway narrowing using breath sound spectrum analysis in children. Respir Investig. 2016;54:20–8.CrossRef
14.
go back to reference Murphy RL Jr, Holford SK, Knowler WC. Visual lung-sound characterization by time-expanded wave-form analysis. N Engl J Med. 1977;296:968–71.CrossRef Murphy RL Jr, Holford SK, Knowler WC. Visual lung-sound characterization by time-expanded wave-form analysis. N Engl J Med. 1977;296:968–71.CrossRef
16.
go back to reference Baughman RP, Shipley RT, Loudon RG, Lower EE. Crackles in interstitial lung disease. Comparison of sarcoidosis and fibrosing alveolitis. Chest. 1991;100:96–101.CrossRef Baughman RP, Shipley RT, Loudon RG, Lower EE. Crackles in interstitial lung disease. Comparison of sarcoidosis and fibrosing alveolitis. Chest. 1991;100:96–101.CrossRef
17.
go back to reference King TE Jr, Costabel U, Cordier J-F, doPico GA, du Bois RM, Lynch D, et al. Idiopathic pulmonary fibrosis: diagnosis and treatment. Am J Respir Crit Care Med. 2000;161:646–64.CrossRef King TE Jr, Costabel U, Cordier J-F, doPico GA, du Bois RM, Lynch D, et al. Idiopathic pulmonary fibrosis: diagnosis and treatment. Am J Respir Crit Care Med. 2000;161:646–64.CrossRef
18.
go back to reference Flietstra B, Markuzon N, Vyshedskiy A, Murphy R. Automated analysis of crackles in patients with interstitial pulmonary fibrosis. Pulm Med. 2011;2011:590506.CrossRef Flietstra B, Markuzon N, Vyshedskiy A, Murphy R. Automated analysis of crackles in patients with interstitial pulmonary fibrosis. Pulm Med. 2011;2011:590506.CrossRef
19.
go back to reference Ponte DF, Moraes R, Hizume DC, Alencar AM. Characterization of crackles from patients with fibrosis, heart failure and pneumonia. Med Eng Phys. 2013;35:448–56.CrossRef Ponte DF, Moraes R, Hizume DC, Alencar AM. Characterization of crackles from patients with fibrosis, heart failure and pneumonia. Med Eng Phys. 2013;35:448–56.CrossRef
20.
go back to reference Munakata M, Ukita H, Doi I, Ohtsuka Y, Masaki Y, Homma Y, et al. Spectral and waveform characteristics of fine and coarse crackles. Thorax. 1991;46:651–7.CrossRef Munakata M, Ukita H, Doi I, Ohtsuka Y, Masaki Y, Homma Y, et al. Spectral and waveform characteristics of fine and coarse crackles. Thorax. 1991;46:651–7.CrossRef
21.
go back to reference Ono H, Taniguchi Y, Shinoda K, Sakamoto T, Kudoh S, Gemma A. Evaluation of the usefulness of spectral analysis of inspiratory lung sounds recorded with phonopneumography in patients with interstitial pneumonia. J Nippon Med Sch. 2009;76:67–75.CrossRef Ono H, Taniguchi Y, Shinoda K, Sakamoto T, Kudoh S, Gemma A. Evaluation of the usefulness of spectral analysis of inspiratory lung sounds recorded with phonopneumography in patients with interstitial pneumonia. J Nippon Med Sch. 2009;76:67–75.CrossRef
22.
23.
go back to reference Piirilä P, Sovijärvi AR, Kaisla T, Rajala HM, Katila T. Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD, and heart failure. Chest. 1991;99:1076–83.CrossRef Piirilä P, Sovijärvi AR, Kaisla T, Rajala HM, Katila T. Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD, and heart failure. Chest. 1991;99:1076–83.CrossRef
24.
go back to reference Kawamura T, Matsumoto T, Tanaka N, Kido S, Jiang Z, Matsunaga N. Crackle analysis for chest auscultation and comparison with high-resolution CT findings. Radiat Med. 2003;21:258–66.PubMed Kawamura T, Matsumoto T, Tanaka N, Kido S, Jiang Z, Matsunaga N. Crackle analysis for chest auscultation and comparison with high-resolution CT findings. Radiat Med. 2003;21:258–66.PubMed
25.
go back to reference Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, et al. Mechanism of inspiratory and expiratory crackles. Chest. 2009;135:156–64.CrossRef Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, et al. Mechanism of inspiratory and expiratory crackles. Chest. 2009;135:156–64.CrossRef
26.
go back to reference Johkoh T, Sakai F, Noma S, Akira M, Fujimoto K, Watadani T, et al. Honeycombing on CT; its definition, pathologic correlation, and future direction of its diagnosis. Eur J Radiol. 2014;83:27–31.CrossRef Johkoh T, Sakai F, Noma S, Akira M, Fujimoto K, Watadani T, et al. Honeycombing on CT; its definition, pathologic correlation, and future direction of its diagnosis. Eur J Radiol. 2014;83:27–31.CrossRef
Metadata
Title
The acoustic characteristics of fine crackles predict honeycombing on high-resolution computed tomography
Authors
Toshikazu Fukumitsu
Yasushi Obase
Yuji Ishimatsu
Shota Nakashima
Hiroshi Ishimoto
Noriho Sakamoto
Kosei Nishitsuji
Shunpei Shiwa
Tomoya Sakai
Sueharu Miyahara
Kazuto Ashizawa
Hiroshi Mukae
Ryo Kozu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2019
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-019-0916-5

Other articles of this Issue 1/2019

BMC Pulmonary Medicine 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.