Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Inflammation-regulating factors in ascites as predictive biomarkers of drug resistance and progression-free survival in serous epithelial ovarian cancers

Authors: Denis Lane, Isabelle Matte, Perrine Garde-Granger, Claude Laplante, Alex Carignan, Claudine Rancourt, Alain Piché

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Platinum-based combination therapy is the standard first-line treatment for women with advanced serous epithelial ovarian carcinoma (EOC). However, about 20 % will not respond and are considered clinically resistant. The availability of biomarkers to predict responses to the initial therapy would provide a practical approach to identify women who would benefit from a more appropriate first-line treatment. Ascites is an attractive inflammatory fluid for biomarker discovery as it is easy and minimally invasive to obtain. The aim of this study was to evaluate whether six selected inflammation-regulating factors in ascites could serve as diagnostic or drug resistance biomarkers in patients with advanced serous EOC.

Methods

A total of 53 women with stage III/IV serous EOC and 10 women with benign conditions were enrolled in this study. Eleven of the 53 women with serous EOC were considered clinically resistant to treatment with progression-free survival < 6 months. Ascites were collected at the time of the debulking surgery and the levels of cytokines were measured by ELISA. The six selected cytokines were evaluated for their ability to discriminate serous EOC from benign controls, and to discriminate platinum resistant from platinum sensitive patients.

Results

Median ascites levels of IL-6, IL-10 and osteoprotegerin (OPG) were significantly higher in women with advanced serous EOC than in controls (P ≤ 0.012). There were no significant difference in the median ascites levels of leptin, soluble urokinase plasminogen activator receptor (suPAR) and CCL18 among serous EOC women and controls. In Receiver Operator curve (ROC) analysis, IL-6, IL-10 and OPG had a high area under the curve value of 0.905, 0.832 and 0.825 respectively for distinguishing EOC from benign controls. ROC analysis of individual cytokines revealed low discriminating potential to stratify patients according to their sensitivity to first-line treatment. The combination of biomarkers with the highest discriminating potential was with CA125 and leptin (AUC = 0.936, 95 % CI: 0.894–0.978).

Conclusion

IL-6 was found to be strongly associated with advanced serous EOC and could be used in combination with serum CA125 to discriminate benign and EOC. Furthermore, the combination of serum CA125 and ascites leptin was a strong predictor of clinical resistance to first-line therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Partridge EE, Barnes MN. Epithelial ovarian cancer: prevention, diagnosis, and treatment. CA Cancer J Clin. 1999;49:297–320.CrossRefPubMed Partridge EE, Barnes MN. Epithelial ovarian cancer: prevention, diagnosis, and treatment. CA Cancer J Clin. 1999;49:297–320.CrossRefPubMed
2.
4.
go back to reference Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, et al. Focus on epithelial ovarian cancer. Cancer Cell. 2004;5:19–24.CrossRefPubMed Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, et al. Focus on epithelial ovarian cancer. Cancer Cell. 2004;5:19–24.CrossRefPubMed
6.
7.
go back to reference Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin (Muc16). J Biol Chem. 2001;276:27371–5.CrossRefPubMed Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin (Muc16). J Biol Chem. 2001;276:27371–5.CrossRefPubMed
8.
go back to reference Yin BW, Dnistrian A, Lloyd KO. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. Int J Cancer. 2002;98:737–40.CrossRefPubMed Yin BW, Dnistrian A, Lloyd KO. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. Int J Cancer. 2002;98:737–40.CrossRefPubMed
9.
go back to reference O’Brien TJ, Beard JB, Underwood LJ, Shigemasa K. The CA125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumour Biol. 2002;23:154–69.CrossRefPubMed O’Brien TJ, Beard JB, Underwood LJ, Shigemasa K. The CA125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumour Biol. 2002;23:154–69.CrossRefPubMed
10.
go back to reference Canney PA, Moore M, Wilkinson PM, James RD. Ovarian cancer antigen CA125: a prospective clinical assessment of its role as a tumour marker. Br J Cancer. 1984;50:765–9.CrossRefPubMedPubMedCentral Canney PA, Moore M, Wilkinson PM, James RD. Ovarian cancer antigen CA125: a prospective clinical assessment of its role as a tumour marker. Br J Cancer. 1984;50:765–9.CrossRefPubMedPubMedCentral
11.
go back to reference Vergote IB, Bormer OP, Abeler VM. Evaluation of serum CA 125 levels in the monitoring of ovarian cancer. Am J Obstet Gynecol. 1987;157:88–92.CrossRefPubMed Vergote IB, Bormer OP, Abeler VM. Evaluation of serum CA 125 levels in the monitoring of ovarian cancer. Am J Obstet Gynecol. 1987;157:88–92.CrossRefPubMed
12.
go back to reference Bast Jr RC, Klug TL, St-John E, Jenison E, Niloff JM, Lazarus H, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med. 1983;309:883–7.CrossRefPubMed Bast Jr RC, Klug TL, St-John E, Jenison E, Niloff JM, Lazarus H, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med. 1983;309:883–7.CrossRefPubMed
13.
go back to reference Rancourt C, Matte I, Lane D, Piché A. The role of MUC16 mucin (CA125) in the pathogenesis of ovarian cancer. Chapter 4 in Ovarian Cancer: Basic science perspective. INTECH open access publisher: Janeza Trdine 9, 51000 Rijeka, Croatia; 2012. Rancourt C, Matte I, Lane D, Piché A. The role of MUC16 mucin (CA125) in the pathogenesis of ovarian cancer. Chapter 4 in Ovarian Cancer: Basic science perspective. INTECH open access publisher: Janeza Trdine 9, 51000 Rijeka, Croatia; 2012.
14.
go back to reference Moore RG, Miller MC, DiSilvestro P, Landrum LM, Gajewski W, Ball JJ, et al. Evaluation of the diagnostic accuracy of the risk of ovarian malignancy algorithm in women with pelvic mass. Obstet Gynecol. 2011;118:280–8.CrossRefPubMedPubMedCentral Moore RG, Miller MC, DiSilvestro P, Landrum LM, Gajewski W, Ball JJ, et al. Evaluation of the diagnostic accuracy of the risk of ovarian malignancy algorithm in women with pelvic mass. Obstet Gynecol. 2011;118:280–8.CrossRefPubMedPubMedCentral
15.
go back to reference Moore RG, McMeekin DS, Brown AK, DiSilvestro P, Miller MC, Allard WJ, et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with pelvic mass. Gynecol Oncol. 2009;112:40–6.CrossRefPubMed Moore RG, McMeekin DS, Brown AK, DiSilvestro P, Miller MC, Allard WJ, et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with pelvic mass. Gynecol Oncol. 2009;112:40–6.CrossRefPubMed
16.
go back to reference Molina R, Escudero JM, Augé JM, Filella X, Foj L, Torné A, et al. HE4 a novel tumour marker for ovarian cancer: comparison with CA125 and ROMA algorithm in patients with genaecological diseases. Tumor Biol. 2011;32:1087–95.CrossRef Molina R, Escudero JM, Augé JM, Filella X, Foj L, Torné A, et al. HE4 a novel tumour marker for ovarian cancer: comparison with CA125 and ROMA algorithm in patients with genaecological diseases. Tumor Biol. 2011;32:1087–95.CrossRef
17.
go back to reference Felder M, Kapur A, Bosquet JG, Horibata S, Heintz J, Albrecht R, et al. MUC16 (CA125): tumor biomarker to cancer therapy, work in progress. Mol Cancer. 2014;13:129.CrossRefPubMedPubMedCentral Felder M, Kapur A, Bosquet JG, Horibata S, Heintz J, Albrecht R, et al. MUC16 (CA125): tumor biomarker to cancer therapy, work in progress. Mol Cancer. 2014;13:129.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.CrossRefPubMed Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.CrossRefPubMed
20.
go back to reference Lane D, Robert V, Grondin R, Rancourt C, Piché A. Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt in human ovarian carcinoma cells. Int J Cancer. 2007;121:1227–37.CrossRefPubMed Lane D, Robert V, Grondin R, Rancourt C, Piché A. Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt in human ovarian carcinoma cells. Int J Cancer. 2007;121:1227–37.CrossRefPubMed
21.
go back to reference Lane D, Goncharenko-Khaider N, Rancourt C, Piché A. Ovarian cancer ascites protects from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene. 2010;29:3519–31.CrossRefPubMed Lane D, Goncharenko-Khaider N, Rancourt C, Piché A. Ovarian cancer ascites protects from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene. 2010;29:3519–31.CrossRefPubMed
22.
go back to reference Goncharenko-Khaider N, Matte I, Lane D, Rancourt C, Piché A. Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis. Mol Cancer. 2012;11:84.CrossRefPubMedPubMedCentral Goncharenko-Khaider N, Matte I, Lane D, Rancourt C, Piché A. Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis. Mol Cancer. 2012;11:84.CrossRefPubMedPubMedCentral
23.
go back to reference Lane D, Matte I, Rancourt C, Piché A. The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer. J Ovarian Res. 2010;3:1.CrossRefPubMedPubMedCentral Lane D, Matte I, Rancourt C, Piché A. The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer. J Ovarian Res. 2010;3:1.CrossRefPubMedPubMedCentral
24.
go back to reference Mills GB, May C, McGill M, Roifman CM, Mellors A. A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res. 1988;48:1066–71.PubMed Mills GB, May C, McGill M, Roifman CM, Mellors A. A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res. 1988;48:1066–71.PubMed
25.
go back to reference Mills GB, May C, Hill M, Campbell S, Shaw P, Marks A. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J Clin Invest. 1990;86:851–5.CrossRefPubMedPubMedCentral Mills GB, May C, Hill M, Campbell S, Shaw P, Marks A. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J Clin Invest. 1990;86:851–5.CrossRefPubMedPubMedCentral
26.
go back to reference Richardson M, Gunawan J, Hatton MW, Seidlitz E, Hirte HW, Singh G. Malignant ascites fluids (MAF), including ovarian cancer-associated MAF, contains angiostatin and other factor(s) which inhibit angiogenesis. Gynecol Oncol. 2002;86:279–87.CrossRefPubMed Richardson M, Gunawan J, Hatton MW, Seidlitz E, Hirte HW, Singh G. Malignant ascites fluids (MAF), including ovarian cancer-associated MAF, contains angiostatin and other factor(s) which inhibit angiogenesis. Gynecol Oncol. 2002;86:279–87.CrossRefPubMed
27.
go back to reference Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, et al. Characterization of an ovarian cancer activating factor in ascites of ovarian cancer patients. Clin Cancer Res. 1995;1:1223–32.PubMed Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, et al. Characterization of an ovarian cancer activating factor in ascites of ovarian cancer patients. Clin Cancer Res. 1995;1:1223–32.PubMed
28.
go back to reference Yamada T, Sato K, Komachi M, Malchinkhuu E, Tobo M, Kimura T, et al. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem. 2004;279:6595–605.CrossRefPubMed Yamada T, Sato K, Komachi M, Malchinkhuu E, Tobo M, Kimura T, et al. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem. 2004;279:6595–605.CrossRefPubMed
29.
go back to reference Giuntoli RL, Webb TJ, Zoso A, Rogers O, Diaz-Montes TP, Bristow RE, et al. Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Res. 2009;29:2875–84.PubMed Giuntoli RL, Webb TJ, Zoso A, Rogers O, Diaz-Montes TP, Bristow RE, et al. Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Res. 2009;29:2875–84.PubMed
30.
go back to reference Matte I, Lane D, Laplante C, Rancourt C, Piché A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res. 2012;2:566–80.PubMedPubMedCentral Matte I, Lane D, Laplante C, Rancourt C, Piché A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res. 2012;2:566–80.PubMedPubMedCentral
32.
go back to reference Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu C, Stone RL, Moreno-Smith M, et al. Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem. 2010;285:35462–70.CrossRefPubMedPubMedCentral Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu C, Stone RL, Moreno-Smith M, et al. Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem. 2010;285:35462–70.CrossRefPubMedPubMedCentral
33.
go back to reference Johnson MT, Gotlieb WH, Rabbi M, Martinez-Maza O, Berek JS. Induction of cisplatin resistance and metallothionein expression by interleukin-6. Gynecol Oncol. 1993;49:110. Johnson MT, Gotlieb WH, Rabbi M, Martinez-Maza O, Berek JS. Induction of cisplatin resistance and metallothionein expression by interleukin-6. Gynecol Oncol. 1993;49:110.
34.
go back to reference Cohen S, Bruuchim I, Graiver D, Evron Z, Oron-Karni V, Pasmanik-Chor M, et al. Platinum-resistance in ovarian cancer cells is mediated by IL-6 secretion via the increased expression of its target cIAP-2. J Mol Med. 2013;91:357–68.CrossRefPubMed Cohen S, Bruuchim I, Graiver D, Evron Z, Oron-Karni V, Pasmanik-Chor M, et al. Platinum-resistance in ovarian cancer cells is mediated by IL-6 secretion via the increased expression of its target cIAP-2. J Mol Med. 2013;91:357–68.CrossRefPubMed
35.
go back to reference Coward JI, Kulbe H. The role of interleukin-6 in gynaecological malignancies. Cytokine Growth Factor Rev. 2012;23:333–42.CrossRefPubMed Coward JI, Kulbe H. The role of interleukin-6 in gynaecological malignancies. Cytokine Growth Factor Rev. 2012;23:333–42.CrossRefPubMed
36.
go back to reference Hanash SM, Pitteri S, Faca VM. Mining the plasma proteome for cancer biomarker. Nature. 2008;452:571–9.CrossRefPubMed Hanash SM, Pitteri S, Faca VM. Mining the plasma proteome for cancer biomarker. Nature. 2008;452:571–9.CrossRefPubMed
37.
go back to reference Rustin GJ, Timmers P, Nelstrop A, Shreeves G, Bentzen SM, Baron B, et al. Comparison of CA-125 and standard definitions of progression of ovarian cancer in the intergroup trial of cisplatin and paclitaxel versus cisplatin and cyclophosphamide. J Clin Oncol. 2006;24:45–51.CrossRefPubMed Rustin GJ, Timmers P, Nelstrop A, Shreeves G, Bentzen SM, Baron B, et al. Comparison of CA-125 and standard definitions of progression of ovarian cancer in the intergroup trial of cisplatin and paclitaxel versus cisplatin and cyclophosphamide. J Clin Oncol. 2006;24:45–51.CrossRefPubMed
38.
go back to reference Lane D, Matte I, Rancourt C, Piché A. Osteoprotegerin (OPG) protects ovarian cancer cells from TRAIL-induced apoptosis but does not contribute to malignant ascites-mediated attenuation of TRAIL-induced apoptosis. J Ovarian Res. 2012;5:34.CrossRefPubMedPubMedCentral Lane D, Matte I, Rancourt C, Piché A. Osteoprotegerin (OPG) protects ovarian cancer cells from TRAIL-induced apoptosis but does not contribute to malignant ascites-mediated attenuation of TRAIL-induced apoptosis. J Ovarian Res. 2012;5:34.CrossRefPubMedPubMedCentral
39.
go back to reference Lane D, Matte I, Laplante C, Garde-Granger P, Rancourt C, Piché A. Osteoprotegerin (OPG) activates integrin, focal adhesion knase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis. J Ovarian Res. 2013;6:82.CrossRefPubMedPubMedCentral Lane D, Matte I, Laplante C, Garde-Granger P, Rancourt C, Piché A. Osteoprotegerin (OPG) activates integrin, focal adhesion knase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis. J Ovarian Res. 2013;6:82.CrossRefPubMedPubMedCentral
40.
go back to reference Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, et al. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res. 2006;12:5055–63.CrossRefPubMed Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, et al. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res. 2006;12:5055–63.CrossRefPubMed
41.
go back to reference Guo Y, Nemeth J, O’Brien C, Susa M, Liu X, Zhang Z, et al. Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clin Cancer Res. 2010;16:5759–69.CrossRefPubMed Guo Y, Nemeth J, O’Brien C, Susa M, Liu X, Zhang Z, et al. Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clin Cancer Res. 2010;16:5759–69.CrossRefPubMed
42.
go back to reference Yan HQ, Huang XB, Ke SZ, Jiang YN, Zhang YH, Wang YN, et al. Interleukin-6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation. Cancer Sci. 2014;105:1220–7.CrossRefPubMedPubMedCentral Yan HQ, Huang XB, Ke SZ, Jiang YN, Zhang YH, Wang YN, et al. Interleukin-6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation. Cancer Sci. 2014;105:1220–7.CrossRefPubMedPubMedCentral
43.
go back to reference Zeng L, O’Connor C, Zhang J, Kaplan AM, Cohen DA. IL-10 promotes resistance to apoptosis and metastatic potential in tumor lung tumor cell lines. Cytokine. 2010;49:294–302.CrossRefPubMed Zeng L, O’Connor C, Zhang J, Kaplan AM, Cohen DA. IL-10 promotes resistance to apoptosis and metastatic potential in tumor lung tumor cell lines. Cytokine. 2010;49:294–302.CrossRefPubMed
44.
go back to reference Efferth T, Fabry U, Osieka R. Leptin contributes to the protection of human leukemic cells from cisplatinum cytotoxicity. Anticancer Res. 2000;20:2541–6.PubMed Efferth T, Fabry U, Osieka R. Leptin contributes to the protection of human leukemic cells from cisplatinum cytotoxicity. Anticancer Res. 2000;20:2541–6.PubMed
45.
go back to reference Alfano D, Iaccarino I, Stoppelli MP. Urokinase signaling through its receptor protects against anoikis by increasing Bcl-xL expression levels. J Biol Chem. 2006;281:17758–67.CrossRefPubMed Alfano D, Iaccarino I, Stoppelli MP. Urokinase signaling through its receptor protects against anoikis by increasing Bcl-xL expression levels. J Biol Chem. 2006;281:17758–67.CrossRefPubMed
46.
go back to reference Gutova M, Najbauer J, Gevorgyan A, Metz MZ, Weng Y, Shih CC, et al. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE. 2007;2:e243.CrossRefPubMedPubMedCentral Gutova M, Najbauer J, Gevorgyan A, Metz MZ, Weng Y, Shih CC, et al. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE. 2007;2:e243.CrossRefPubMedPubMedCentral
47.
go back to reference Lambeck AJ, Crijns AP, Leffers N, Sluiter WJ, ten Hoor KA, Braid M, et al. Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin-7. Clin Cancer Res. 2007;13:2385–91.CrossRefPubMed Lambeck AJ, Crijns AP, Leffers N, Sluiter WJ, ten Hoor KA, Braid M, et al. Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin-7. Clin Cancer Res. 2007;13:2385–91.CrossRefPubMed
48.
go back to reference Mustea A, Konsgen D, Braicu EI, Pirvulescu C, Sun P, Sofroni D, et al. Expression of IL-10 in patients with ovarian carcinoma. Anticancer Res. 2006;26:1715–8.PubMed Mustea A, Konsgen D, Braicu EI, Pirvulescu C, Sun P, Sofroni D, et al. Expression of IL-10 in patients with ovarian carcinoma. Anticancer Res. 2006;26:1715–8.PubMed
49.
go back to reference Chudecka-Glaz AM, Cymbaluk-Ploska AA, Menkiszak JL, Pius-Sadowska E, Machalinski BB, Sompolska-Rzechula A, et al. Assessment of selected cytokines, proteins, and growth factors in the peritoneal fluid of patients with ovarian cancer and benign gynecological conditions. OncoTargets Ther. 2015;8:471–85.CrossRef Chudecka-Glaz AM, Cymbaluk-Ploska AA, Menkiszak JL, Pius-Sadowska E, Machalinski BB, Sompolska-Rzechula A, et al. Assessment of selected cytokines, proteins, and growth factors in the peritoneal fluid of patients with ovarian cancer and benign gynecological conditions. OncoTargets Ther. 2015;8:471–85.CrossRef
50.
go back to reference Einhorn N, Knapp RC, Bast RC, Zurawski Jr VR. CA125 assay used in conjunction with CA 15–3 and TAG-72 assays for discrimination between malignant and non-malignant diseases of the ovary. Acta Oncol. 1989;28:655–7.CrossRefPubMed Einhorn N, Knapp RC, Bast RC, Zurawski Jr VR. CA125 assay used in conjunction with CA 15–3 and TAG-72 assays for discrimination between malignant and non-malignant diseases of the ovary. Acta Oncol. 1989;28:655–7.CrossRefPubMed
51.
go back to reference Scambia G, Testa U, Panici PB, Foti E, Martucci R, Gadducci A, et al. Prognostic significance of IL-6 serum levels in patients with ovarian cancer. Br J Cancer. 1995;71:354–64.CrossRefPubMedPubMedCentral Scambia G, Testa U, Panici PB, Foti E, Martucci R, Gadducci A, et al. Prognostic significance of IL-6 serum levels in patients with ovarian cancer. Br J Cancer. 1995;71:354–64.CrossRefPubMedPubMedCentral
52.
go back to reference Plante M, Rubin SC, Wong GY, Federici MG, Finstad CL, Gastl GA. Interleukin-6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer. Cancer. 1994;73:1882–8.CrossRefPubMed Plante M, Rubin SC, Wong GY, Federici MG, Finstad CL, Gastl GA. Interleukin-6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer. Cancer. 1994;73:1882–8.CrossRefPubMed
53.
go back to reference Borsellino N, Belldegrun A, Bonavida B. Endogenous interleukin-6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res. 1995;55:4633–9.PubMed Borsellino N, Belldegrun A, Bonavida B. Endogenous interleukin-6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res. 1995;55:4633–9.PubMed
54.
go back to reference Spriggs D. Optimal sequencing in the treatment of recurrent ovarian cancer. Gynecol Oncol. 2003;90:539–44. Spriggs D. Optimal sequencing in the treatment of recurrent ovarian cancer. Gynecol Oncol. 2003;90:539–44.
55.
go back to reference Huang H, Li Y, Liu J, Zheng M, Feng Y, Hu K, et al. Screening and identification of biomarkers in ascites related to intrinsic chemoresistance of serous epithelial ovarian cancers. PLoS ONE. 2012;7:51256.CrossRef Huang H, Li Y, Liu J, Zheng M, Feng Y, Hu K, et al. Screening and identification of biomarkers in ascites related to intrinsic chemoresistance of serous epithelial ovarian cancers. PLoS ONE. 2012;7:51256.CrossRef
56.
go back to reference Han Y, Huang H, Xiao Z, Zhang W, Cao Y, Qu L, et al. Integrated analysis of gene expression profiles associated with response of platinum/paclitaxel-based treatment in epithelial ovarian cancer. PLoS ONE. 2012;7:52745.CrossRef Han Y, Huang H, Xiao Z, Zhang W, Cao Y, Qu L, et al. Integrated analysis of gene expression profiles associated with response of platinum/paclitaxel-based treatment in epithelial ovarian cancer. PLoS ONE. 2012;7:52745.CrossRef
57.
go back to reference Bachvarov D, L’Esperance S, Popa I, Bachvarova M, Plante M, Têtu B. Gene expression patterns of chemoresistant and chemosenstive serous epithelial ovarian tumors with possible predictive value in response to initial chemotherapy. Int J Oncol. 2006;29:919–33.PubMed Bachvarov D, L’Esperance S, Popa I, Bachvarova M, Plante M, Têtu B. Gene expression patterns of chemoresistant and chemosenstive serous epithelial ovarian tumors with possible predictive value in response to initial chemotherapy. Int J Oncol. 2006;29:919–33.PubMed
58.
go back to reference Weijl NI, Hopman GD, Wipkink-Bakker A, Lentjes EG, Berger HM, Cleton FJ, et al. Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. Ann Oncol. 1998;9:1331–7.CrossRefPubMed Weijl NI, Hopman GD, Wipkink-Bakker A, Lentjes EG, Berger HM, Cleton FJ, et al. Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. Ann Oncol. 1998;9:1331–7.CrossRefPubMed
59.
go back to reference Lakshmanan I, Ponnusamy MP, Das S, Chakraborty S, Haridas D, Mukhopadhyay P, et al. MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells. Oncogene. 2012;31:805–17.CrossRefPubMed Lakshmanan I, Ponnusamy MP, Das S, Chakraborty S, Haridas D, Mukhopadhyay P, et al. MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells. Oncogene. 2012;31:805–17.CrossRefPubMed
60.
go back to reference Matte I, Lane D, Boivin M, Rancourt C, Piché A. MUC16 mucin (CA125) attenuates TRAIL-induced apoptosis by decreasing TRAIL receptor R2 expression and increasing c-FLIP expression. BMC Cancer. 2014;14:234.CrossRefPubMedPubMedCentral Matte I, Lane D, Boivin M, Rancourt C, Piché A. MUC16 mucin (CA125) attenuates TRAIL-induced apoptosis by decreasing TRAIL receptor R2 expression and increasing c-FLIP expression. BMC Cancer. 2014;14:234.CrossRefPubMedPubMedCentral
61.
go back to reference Boivin M, Lane D, Rancourt C, Piché A. CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecol Oncol. 2009;115:407–13.CrossRefPubMed Boivin M, Lane D, Rancourt C, Piché A. CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecol Oncol. 2009;115:407–13.CrossRefPubMed
62.
go back to reference Chen C, Chang YC, Lan MS, Breslin M. Leptin stimulates ovarian cancer cell growth and inhibits apoptosis by incresing cyclin D1 and Mcl-1 expression via the activation of the MEK/ERK1/2 and PI3K/Akt signaling pathways. Int J Oncol. 2013;42:1113–9.PubMed Chen C, Chang YC, Lan MS, Breslin M. Leptin stimulates ovarian cancer cell growth and inhibits apoptosis by incresing cyclin D1 and Mcl-1 expression via the activation of the MEK/ERK1/2 and PI3K/Akt signaling pathways. Int J Oncol. 2013;42:1113–9.PubMed
Metadata
Title
Inflammation-regulating factors in ascites as predictive biomarkers of drug resistance and progression-free survival in serous epithelial ovarian cancers
Authors
Denis Lane
Isabelle Matte
Perrine Garde-Granger
Claude Laplante
Alex Carignan
Claudine Rancourt
Alain Piché
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1511-7

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine