Skip to main content
Top
Published in: Journal of Ovarian Research 1/2010

Open Access 01-12-2010 | Research

The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer

Authors: Denis Lane, Isabelle Matte, Claudine Rancourt, Alain Piché

Published in: Journal of Ovarian Research | Issue 1/2010

Login to get access

Abstract

Background

The production of ascites is a common complication of ovarian cancer. Ascites constitute a unique tumor microenvironment that may affect disease progression. In this context, we recently showed that ovarian cancer ascites may protect tumor cells from TRAIL-induced apoptosis. In this study, we sought to determine whether the prosurvival effect of ascites affects disease-free intervals.

Methods

Peritoneal fluids were obtained from 54 women undergoing intra-abdominal surgery for suspected ovarian cancer (44 cancers and 10 benign diseases). The ability of peritoneal fluids to protect from TRAIL was assessed in the ovarian cancer cell line CaOV3, and IC50 were determined. The anti-apoptotic activity of 6 ascites against cisplatin, paclitaxel, doxorubicin, etoposide and vinorelbine was also assessed in CaOV3 cells, and the prosurvival activity of two ascites was assessed in 9 primary ovarian cancer cultures.

Results

Among the 54 peritoneal fluids tested, inhibition of TRAIL cytotoxicity was variable. Fluids originating from ovarian cancer were generally more protective than fluids from non-malignant diseases. Most of the 44 ovarian cancer ascites increased TRAIL IC50 and this inhibitory effect did not correlate strongly with the protein concentration in these ascites or the levels of serum CA125, a tumor antigen which is used in the clinic as a marker of tumor burden. The effect of ascites on cisplatin- and paclitaxel-induced cell death was assessed with 4 ascites having inhibitory effect on TRAIL-induced cell death and 2 that do not. The four ascites with prosurvival activity against TRAIL had some inhibitory on cisplatin and/or paclitaxel. Two ovarian cancer ascites, OVC346 and OVC509, also inhibited TRAIL cytotoxicity in 9 primary cultures of ovarian tumor and induced Akt activation in three of these primary cultures. Among a cohort of 35 patients with ascites, a threshold of TRAIL IC50 with ascites/IC50 without ascites > 2 was associated with shorter disease-free interval.

Conclusions

The prosurvival activity of ascites against TRAIL is associated with shorter disease-free interval, which may be explained, at least in part, by ascites-induced cisplatin/paclitaxel resistance. Our findings suggest that ascites may contain prosurvival factors that protect against TRAIL and chemotherapy and consequently affect disease progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics, 2008. CA Cancer J Clin 2008, 49: 8–31. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics, 2008. CA Cancer J Clin 2008, 49: 8–31.
2.
go back to reference Auersperg N, Ota T, Mitchell GW: Early events in ovarian epithelial carcinogenesis: progress and problems in experimental approaches. Int J Gynecol Cancer 2002, 12: 691–703. 10.1046/j.1525-1438.2002.01152.xCrossRefPubMed Auersperg N, Ota T, Mitchell GW: Early events in ovarian epithelial carcinogenesis: progress and problems in experimental approaches. Int J Gynecol Cancer 2002, 12: 691–703. 10.1046/j.1525-1438.2002.01152.xCrossRefPubMed
3.
go back to reference Mills GB, May C, McGill M, Roifman CM, Mellors A: A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res 1988, 48: 1066–1071.PubMed Mills GB, May C, McGill M, Roifman CM, Mellors A: A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res 1988, 48: 1066–1071.PubMed
4.
go back to reference Mills GB, May C, Hill M, Campbell S, Shaw P, Marks A: Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J Clin Invest 1990, 86: 851–855. 10.1172/JCI114784PubMedCentralCrossRefPubMed Mills GB, May C, Hill M, Campbell S, Shaw P, Marks A: Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J Clin Invest 1990, 86: 851–855. 10.1172/JCI114784PubMedCentralCrossRefPubMed
5.
go back to reference Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, Hurteau J, Casey G, Goodbody A, Mellors A, Holub BJ, Mills GB: Characterization of an ovarian cancer activating factor in ascites of ovarian cancer patients. Clin Cancer Res 1995, 1: 1223–1232.PubMed Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, Hurteau J, Casey G, Goodbody A, Mellors A, Holub BJ, Mills GB: Characterization of an ovarian cancer activating factor in ascites of ovarian cancer patients. Clin Cancer Res 1995, 1: 1223–1232.PubMed
6.
go back to reference Abdollahi T, Robertson NM, Abdollahi A, Litwack G: Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3. Cancer Res 2003, 63: 4521–4526.PubMed Abdollahi T, Robertson NM, Abdollahi A, Litwack G: Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3. Cancer Res 2003, 63: 4521–4526.PubMed
7.
go back to reference Radke J, Schmidt D, Bohme M, Schmidt U, Weise W, Morenz J: Cytokine level in malignant ascites and peripheral blood of patients with advanced ovarian carcinoma. Geburtshilfe Frauenheilkd 1996, 56: 83–87. 10.1055/s-2007-1022247CrossRefPubMed Radke J, Schmidt D, Bohme M, Schmidt U, Weise W, Morenz J: Cytokine level in malignant ascites and peripheral blood of patients with advanced ovarian carcinoma. Geburtshilfe Frauenheilkd 1996, 56: 83–87. 10.1055/s-2007-1022247CrossRefPubMed
8.
go back to reference Ahmed N, Riley C, Oliva K, Rice G, Quinn M: Ascites induces modulation of α6β1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br J Cancer 2005, 92: 1475–1485. 10.1038/sj.bjc.6602495PubMedCentralCrossRefPubMed Ahmed N, Riley C, Oliva K, Rice G, Quinn M: Ascites induces modulation of α6β1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br J Cancer 2005, 92: 1475–1485. 10.1038/sj.bjc.6602495PubMedCentralCrossRefPubMed
9.
go back to reference Puiffe ML, Le Page C, Filali-Mouhim A, Zietarska M, Ouellet V, Tonin PN, Chevrette M, Provencher DM, Mes-Masson AM: Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 2007, 9: 820–829. 10.1593/neo.07472PubMedCentralCrossRefPubMed Puiffe ML, Le Page C, Filali-Mouhim A, Zietarska M, Ouellet V, Tonin PN, Chevrette M, Provencher DM, Mes-Masson AM: Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 2007, 9: 820–829. 10.1593/neo.07472PubMedCentralCrossRefPubMed
10.
go back to reference Lane D, Robert V, Grondin R, Rancourt C, Piché A: Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian carcinoma cells. Int J Cancer 2007, 121: 1227–37. 10.1002/ijc.22840CrossRefPubMed Lane D, Robert V, Grondin R, Rancourt C, Piché A: Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian carcinoma cells. Int J Cancer 2007, 121: 1227–37. 10.1002/ijc.22840CrossRefPubMed
11.
go back to reference Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG: Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995, 3: 673–682. 10.1016/1074-7613(95)90057-8CrossRefPubMed Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG: Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995, 3: 673–682. 10.1016/1074-7613(95)90057-8CrossRefPubMed
12.
go back to reference Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF, Goodwin RG, Smith CA: Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997, 186: 1165–1170. 10.1084/jem.186.7.1165PubMedCentralCrossRefPubMed Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF, Goodwin RG, Smith CA: Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997, 186: 1165–1170. 10.1084/jem.186.7.1165PubMedCentralCrossRefPubMed
13.
go back to reference Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J: TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000, 2: 241–243. 10.1038/35008667CrossRefPubMed Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J: TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000, 2: 241–243. 10.1038/35008667CrossRefPubMed
14.
go back to reference Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin V, Yuang J, Gurney A, Goddard AD, Godowski P, Ashkenazi A: A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997, 7: 1003–1006. 10.1016/S0960-9822(06)00422-2CrossRefPubMed Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin V, Yuang J, Gurney A, Goddard AD, Godowski P, Ashkenazi A: A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997, 7: 1003–1006. 10.1016/S0960-9822(06)00422-2CrossRefPubMed
15.
go back to reference Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG: The novel receptor TRAIL-R4 induces NF-KappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997, 7: 813–820. 10.1016/S1074-7613(00)80399-4CrossRefPubMed Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG: The novel receptor TRAIL-R4 induces NF-KappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997, 7: 813–820. 10.1016/S1074-7613(00)80399-4CrossRefPubMed
16.
go back to reference Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME: Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995, 14: 5579–5588.PubMedCentralPubMed Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME: Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995, 14: 5579–5588.PubMedCentralPubMed
17.
go back to reference Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME: Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Che 1999, 274: 22532–38. 10.1074/jbc.274.32.22532CrossRef Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME: Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Che 1999, 274: 22532–38. 10.1074/jbc.274.32.22532CrossRef
18.
go back to reference Newsom-Davis T, Prieske S, Walczak H: Is TRAIL the holy grail of cancer therapy? Apoptosis 2009, 14: 607–623. 10.1007/s10495-009-0321-2CrossRefPubMed Newsom-Davis T, Prieske S, Walczak H: Is TRAIL the holy grail of cancer therapy? Apoptosis 2009, 14: 607–623. 10.1007/s10495-009-0321-2CrossRefPubMed
19.
go back to reference LeBlanc H, Lawrence D, Varfolomeev E, Totpal K, Morlan J, Schow P, Fong S, Schwall R, Sinicropi D, Ashkenazi A: Tumor cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 2002, 8: 274–81. 10.1038/nm0302-274CrossRefPubMed LeBlanc H, Lawrence D, Varfolomeev E, Totpal K, Morlan J, Schow P, Fong S, Schwall R, Sinicropi D, Ashkenazi A: Tumor cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 2002, 8: 274–81. 10.1038/nm0302-274CrossRefPubMed
20.
go back to reference Lane D, Cartier A, L'Espérance S, Côté M, Rancourt C, Piché A: Differential induction of apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in human ovarian carcinoma cells. Gynecol Oncol 2004, 93: 594–604. 10.1016/j.ygyno.2004.03.029CrossRefPubMed Lane D, Cartier A, L'Espérance S, Côté M, Rancourt C, Piché A: Differential induction of apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in human ovarian carcinoma cells. Gynecol Oncol 2004, 93: 594–604. 10.1016/j.ygyno.2004.03.029CrossRefPubMed
21.
go back to reference Zhang L, Fang B: Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 2005, 12: 228–237. 10.1038/sj.cgt.7700792CrossRefPubMed Zhang L, Fang B: Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 2005, 12: 228–237. 10.1038/sj.cgt.7700792CrossRefPubMed
22.
go back to reference Rustin GJ, Timmers P, Nelstrop A, Shreeves G, Bentzen SM, Baron B, Piccart MJ, Bertelsen K, Stuart G, Cassidy J, Eisenhauer E: Comparison of CA-125 and standard definitions of progression of ovarian cancer in the intergroup trial of cisplatin and paclitaxel versus cisplatin and cyclophosphamide. J Clin Oncol 2006, 24: 45–51. 10.1200/JCO.2005.01.2757CrossRefPubMed Rustin GJ, Timmers P, Nelstrop A, Shreeves G, Bentzen SM, Baron B, Piccart MJ, Bertelsen K, Stuart G, Cassidy J, Eisenhauer E: Comparison of CA-125 and standard definitions of progression of ovarian cancer in the intergroup trial of cisplatin and paclitaxel versus cisplatin and cyclophosphamide. J Clin Oncol 2006, 24: 45–51. 10.1200/JCO.2005.01.2757CrossRefPubMed
23.
go back to reference Kabawat SE, Bast RC, Welch WR, Knapp RC, Colvin RB: Immunopathologic characterization of a monoclonal antibody that recognizes common surface antigens of human ovarian tumors of serous, endometrioid, and clear cell types. Am J Clin Pathol 1983, 79: 98–104.PubMed Kabawat SE, Bast RC, Welch WR, Knapp RC, Colvin RB: Immunopathologic characterization of a monoclonal antibody that recognizes common surface antigens of human ovarian tumors of serous, endometrioid, and clear cell types. Am J Clin Pathol 1983, 79: 98–104.PubMed
24.
go back to reference Bast RC Jr, Klug TL, St-John E, Jenison E, Niloff JM, Lazarus H, Berkowitz RS, Leavitt T, Griffiths CT, Parker L, Zurawski VR Jr, Knapp RC: A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Eng J Med 1983, 309: 883–887. 10.1056/NEJM198310133091503CrossRef Bast RC Jr, Klug TL, St-John E, Jenison E, Niloff JM, Lazarus H, Berkowitz RS, Leavitt T, Griffiths CT, Parker L, Zurawski VR Jr, Knapp RC: A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Eng J Med 1983, 309: 883–887. 10.1056/NEJM198310133091503CrossRef
25.
go back to reference Hogdall EV, Christensen L, Kjaer SK, Blakaer J, Kjaerby-Thygesen A, Gayther S: CA125 expression pattern, prognosis and correlation with serum CA125 in ovarian tumor patients from the Danish "MALOVA" Ovarian Cancer Study. Gynecol Oncol 2007, 104: 506–513. 10.1016/j.ygyno.2006.09.028CrossRef Hogdall EV, Christensen L, Kjaer SK, Blakaer J, Kjaerby-Thygesen A, Gayther S: CA125 expression pattern, prognosis and correlation with serum CA125 in ovarian tumor patients from the Danish "MALOVA" Ovarian Cancer Study. Gynecol Oncol 2007, 104: 506–513. 10.1016/j.ygyno.2006.09.028CrossRef
26.
go back to reference Davidson B, Espina V, Steinberg SM, Florenes VA, Liotta LA, Kristensen GB, Tropé CG, Berner A, Kohn EC: Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin Cancer Res 2006, 12: 791–799. 10.1158/1078-0432.CCR-05-2516CrossRefPubMed Davidson B, Espina V, Steinberg SM, Florenes VA, Liotta LA, Kristensen GB, Tropé CG, Berner A, Kohn EC: Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin Cancer Res 2006, 12: 791–799. 10.1158/1078-0432.CCR-05-2516CrossRefPubMed
27.
28.
go back to reference Liu L-Z, Zhou X-D, Qian G, Shi X, Fang J, Jiang B-U: AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/p70S6K1 pathway. Cancer Res 2007, 67: 6325–6332. 10.1158/0008-5472.CAN-06-4261CrossRefPubMed Liu L-Z, Zhou X-D, Qian G, Shi X, Fang J, Jiang B-U: AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/p70S6K1 pathway. Cancer Res 2007, 67: 6325–6332. 10.1158/0008-5472.CAN-06-4261CrossRefPubMed
29.
go back to reference Hu L, Hofmann J, Lu Y, Mills GB, Jaffe RB: Inhibition of phophatidylinositol 3'kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 2002, 62: 1087–1092.PubMed Hu L, Hofmann J, Lu Y, Mills GB, Jaffe RB: Inhibition of phophatidylinositol 3'kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 2002, 62: 1087–1092.PubMed
30.
go back to reference Connor JP, Felder M: Ascites from epithelial ovarian cancer contain high levels of functional decoy receptor 3 (DcR3) and is associated with platinum resistance. Gynecol Oncol 2008, 111: 330–335. 10.1016/j.ygyno.2008.07.012CrossRefPubMed Connor JP, Felder M: Ascites from epithelial ovarian cancer contain high levels of functional decoy receptor 3 (DcR3) and is associated with platinum resistance. Gynecol Oncol 2008, 111: 330–335. 10.1016/j.ygyno.2008.07.012CrossRefPubMed
31.
go back to reference Lancaster JM, Sayer R, Blanchette C, Calingaert B, Whitaker R, Schildkraut J, Marks J, Berchuck A: High expression of tumor necrosis factor-related apoptosis-inducing ligand is associated with favourable ovarian cancer survival. Clin Cancer Res 2003, 9: 762–766.PubMed Lancaster JM, Sayer R, Blanchette C, Calingaert B, Whitaker R, Schildkraut J, Marks J, Berchuck A: High expression of tumor necrosis factor-related apoptosis-inducing ligand is associated with favourable ovarian cancer survival. Clin Cancer Res 2003, 9: 762–766.PubMed
32.
go back to reference Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H: Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 1999, 163: 1906–1913.PubMed Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H: Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 1999, 163: 1906–1913.PubMed
33.
go back to reference Koyama S, Koike N, Adachi S: Expression of TNF-related apoptosis-ligand (TRAIL) and its receptors in gastric carcinoma and tumor-infiltrating lymphocytes: a possible mechanism of immune evasion of the tumor. J Cancer Res Clin Oncol 2002, 128: 73–79. 10.1007/s004320100292CrossRefPubMed Koyama S, Koike N, Adachi S: Expression of TNF-related apoptosis-ligand (TRAIL) and its receptors in gastric carcinoma and tumor-infiltrating lymphocytes: a possible mechanism of immune evasion of the tumor. J Cancer Res Clin Oncol 2002, 128: 73–79. 10.1007/s004320100292CrossRefPubMed
Metadata
Title
The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer
Authors
Denis Lane
Isabelle Matte
Claudine Rancourt
Alain Piché
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2010
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/1757-2215-3-1

Other articles of this Issue 1/2010

Journal of Ovarian Research 1/2010 Go to the issue