Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

The prognostic impact of mutations in spliceosomal genes for myelodysplastic syndrome patients without ring sideroblasts

Authors: Min-Gu Kang, Hye-Ran Kim, Bo-Young Seo, Jun Hyung Lee, Seok-Yong Choi, Soo-Hyun Kim, Jong-Hee Shin, Soon-Pal Suh, Jae-Sook Ahn, Myung-Geun Shin

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Mutations in genes that are part of the splicing machinery for myelodysplastic syndromes (MDS), including MDS without ring sideroblasts (RS), have been widely investigated. The effects of these mutations on clinical outcomes have been diverse and contrasting.

Methods

We examined a cohort of 129 de novo MDS patients, who did not harbor RS, for mutations affecting three spliceosomal genes (SF3B1, U2AF1, and SRSF2).

Results

The mutation rates of SF3B1, U2AF1, and SRSF2 were 7.0 %, 7.8 %, and 10.1 %, respectively. Compared with previously reported results, these rates were relatively infrequent. The SRSF2 mutation strongly correlated with old age (P < 0.001), while the mutation status of SF3B1 did not affect overall survival (OS), progression-free survival (PFS), or acute myeloid leukemia (AML) transformation. In contrast, MDS patients with mutations in U2AF1 or SRSF2 exhibited inferior PFS. The U2AF1 mutation was associated with inferior OS in low-risk MDS patients (P = 0.035). The SRSF2 mutation was somewhat associated with AML transformation (P = 0.083).

Conclusion

Our findings suggest that the frequencies of the SF3B1, U2AF1, and SRSF2 splicing gene mutations in MDS without RS were relatively low. We also demonstrated that the U2AF1 and SRSF2 mutations were associated with an unfavorable prognostic impact in MDS patients without RS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Greenberg PL, Attar E, Bennett JM, Bloomfield CD, De Castro CM, Deeg HJ, et al. Myelodysplastic syndromes. J Natl Compr Canc Netw. 2011;9(1):30–56.PubMedPubMedCentral Greenberg PL, Attar E, Bennett JM, Bloomfield CD, De Castro CM, Deeg HJ, et al. Myelodysplastic syndromes. J Natl Compr Canc Netw. 2011;9(1):30–56.PubMedPubMedCentral
2.
go back to reference Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119(14):3211–8.CrossRefPubMed Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119(14):3211–8.CrossRefPubMed
3.
go back to reference Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.CrossRefPubMed Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.CrossRefPubMed
4.
go back to reference Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer. 2012;12:304.CrossRefPubMedPubMedCentral Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer. 2012;12:304.CrossRefPubMedPubMedCentral
5.
go back to reference Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Kar SA, Jerez A, et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 2012;119(14):3203–10.CrossRefPubMedPubMedCentral Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Kar SA, Jerez A, et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 2012;119(14):3203–10.CrossRefPubMedPubMedCentral
6.
go back to reference Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.CrossRefPubMedPubMedCentral Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.CrossRefPubMedPubMedCentral
7.
go back to reference Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. New England J Med. 2011;365(15):1384–95.CrossRef Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. New England J Med. 2011;365(15):1384–95.CrossRef
9.
go back to reference Visconte V, Makishima H, Maciejewski JP, Tiu RV. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia. 2012;26(12):2447–54.CrossRefPubMedPubMedCentral Visconte V, Makishima H, Maciejewski JP, Tiu RV. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia. 2012;26(12):2447–54.CrossRefPubMedPubMedCentral
10.
go back to reference Hahn CN, Scott HS. Spliceosome mutations in hematopoietic malignancies. Nature genetics. 2012;44(1):9–10.CrossRef Hahn CN, Scott HS. Spliceosome mutations in hematopoietic malignancies. Nature genetics. 2012;44(1):9–10.CrossRef
13.
go back to reference Jung S-W, Lee S-Y, Jekarl D-W, Kim M, Lim J, Kim Y, et al. Cytogenetic characteristics and prognosis analysis in 231 myelodysplastic syndrome patients from a single institution. Leuk Res. 2011;35(6):735–40.CrossRefPubMed Jung S-W, Lee S-Y, Jekarl D-W, Kim M, Lim J, Kim Y, et al. Cytogenetic characteristics and prognosis analysis in 231 myelodysplastic syndrome patients from a single institution. Leuk Res. 2011;35(6):735–40.CrossRefPubMed
14.
go back to reference Je EM, Yoo NJ, Kim YJ, Kim MS, Lee SH. Mutational analysis of splicing machinery genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common tumors. Int J Cancer J Int Du cancer. 2013;133(1):260–5.CrossRef Je EM, Yoo NJ, Kim YJ, Kim MS, Lee SH. Mutational analysis of splicing machinery genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common tumors. Int J Cancer J Int Du cancer. 2013;133(1):260–5.CrossRef
15.
go back to reference Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118(24):6239–46.CrossRefPubMedPubMedCentral Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118(24):6239–46.CrossRefPubMedPubMedCentral
16.
go back to reference Wu SJ, Kuo YY, Hou HA, Li LY, Tseng MH, Huang CF, et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood. 2012;120(15):3106–11.CrossRefPubMed Wu SJ, Kuo YY, Hou HA, Li LY, Tseng MH, Huang CF, et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood. 2012;120(15):3106–11.CrossRefPubMed
17.
go back to reference Damm F, Thol F, Kosmider O, Kade S, Löffeld P, Dreyfus F, et al. SF3B1 mutations in myelodysplastic syndromes: clinical associations and prognostic implications. Leukemia. 2012;26(5):1137.CrossRefPubMed Damm F, Thol F, Kosmider O, Kade S, Löffeld P, Dreyfus F, et al. SF3B1 mutations in myelodysplastic syndromes: clinical associations and prognostic implications. Leukemia. 2012;26(5):1137.CrossRefPubMed
18.
go back to reference Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84.CrossRefPubMed Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84.CrossRefPubMed
19.
go back to reference Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2012;44(1):53–7.CrossRef Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2012;44(1):53–7.CrossRef
Metadata
Title
The prognostic impact of mutations in spliceosomal genes for myelodysplastic syndrome patients without ring sideroblasts
Authors
Min-Gu Kang
Hye-Ran Kim
Bo-Young Seo
Jun Hyung Lee
Seok-Yong Choi
Soo-Hyun Kim
Jong-Hee Shin
Soon-Pal Suh
Jae-Sook Ahn
Myung-Geun Shin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1493-5

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine