Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Kidney Injury | Research article

Meprin β metalloproteases associated with differential metabolite profiles in the plasma and urine of mice with type 1 diabetes and diabetic nephropathy

Authors: Jessica Gooding, Lei Cao, Courtney Whitaker, Jean-Marie Mwiza, Mizpha Fernander, Faihaa Ahmed, Zach Acuff, Susan McRitchie, Susan Sumner, Elimelda Moige Ongeri

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Meprin metalloproteases are abundantly expressed in the brush border membranes of kidney proximal tubules and small intestines. Meprins are also expressed in podocytes and leukocytes (monocytes and macrophages). Meprins are implicated in the pathophysiology of diabetic nephropathy (DN) but underlying mechanisms are not fully understood. Single nucleotide polymophisms (SNPs) in the meprin β gene were associated with DKD in human subjects. Furthermore, meprin α and β double deficiency resulted in more severe kidney injury and higher mortality rates in mice with Streptozotocin (STZ)-induced type 1 diabetes. Identification of meprin substrates has provided insights on how meprins could modulate kidney injury. Meprin targets in the kidney include extracellular matrix (ECM) proteins, modulators of inflammation, and proteins involved in the protein kinase A (PKA) and PKC signaling pathways. The current study used a global metabolomics approach to determine how meprin β expression impacts the metabolite milieu in diabetes and DKD.

Methods

Low dose STZ was used to induce type 1 diabetes in 8-week old wild-type (WT) and meprin β knockout (βKO) mice. Blood and urine samples were obtained at 4 and 8 weeks post-STZ injection. Assays for albumin, creatinine, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule − 1 (KIM-1), and cystatin C were used for biochemical assessment of kidney injury. Data for biomarkers of kidney injury utilized two-way ANOVA. Metabolomics data analysis utilized UPLC-QTOF MS and multivariate statistics.

Results

The number of metabolites with diabetes-associated changes in levels were significantly higher in the WT mice when compared to meprin βKO counterparts. Annotated meprin β expression-associated metabolites with strong variable importance in projection (VIP) scores play roles in lipid metabolism (LysoPC(16:1(9Z)), taurocholic acid), amino acid metabolism (indoxyl sulfate, hippuric acid), and neurotransmitter/stress hormone synthesis (cortisol, 3-methoxy-4-hydroxyphenylethylene glycolsulfate, homovanillic acid sulfate). Metabolites that associated with meprin β deficiency include; 3,5-dihydroxy-3′,4′-dimethoxy-6,7-methylenedioxyflavone 3-glucuronide, pantothenic acid, and indoxyl glucuronide (all decreased in plasma).

Conclusion

Taken together, the annotated metabolites suggest that meprin β impacts complications of diabetes such as DKD by altering distinct metabolite profiles.
Appendix
Available only for authorised users
Literature
1.
go back to reference Beynon RJ, Bond JS. Expression of the Mep-1 gene regulating meprin, a kidney brush border proteinase. Prog Clin Biol Res. 1985;180:185–94.PubMed Beynon RJ, Bond JS. Expression of the Mep-1 gene regulating meprin, a kidney brush border proteinase. Prog Clin Biol Res. 1985;180:185–94.PubMed
2.
go back to reference Bond JS, Butler PE, Beynon RJ. Metalloendopeptidases of the mouse kidney brush border: meprin and endopeptidase-24.11. Biomed Biochim Acta. 1986;45(11–12):1515–21.PubMed Bond JS, Butler PE, Beynon RJ. Metalloendopeptidases of the mouse kidney brush border: meprin and endopeptidase-24.11. Biomed Biochim Acta. 1986;45(11–12):1515–21.PubMed
3.
go back to reference Oneda B, Lods N, Lottaz D, Becker-Pauly C, Stocker W, Pippin J, et al. Metalloprotease meprin beta in rat kidney: glomerular localization and differential expression in glomerulonephritis. PLoS One. 2008;3(5):e2278.CrossRef Oneda B, Lods N, Lottaz D, Becker-Pauly C, Stocker W, Pippin J, et al. Metalloprotease meprin beta in rat kidney: glomerular localization and differential expression in glomerulonephritis. PLoS One. 2008;3(5):e2278.CrossRef
4.
go back to reference Sun Q, Jin HJ, Bond JS. Disruption of the meprin alpha and beta genes in mice alters homeostasis of monocytes and natural killer cells. Exp Hematol. 2009;37(3):346–56.CrossRef Sun Q, Jin HJ, Bond JS. Disruption of the meprin alpha and beta genes in mice alters homeostasis of monocytes and natural killer cells. Exp Hematol. 2009;37(3):346–56.CrossRef
5.
go back to reference Bond JS, Rojas K, Overhauser J, Zoghbi HY, Jiang W. The structural genes, MEP1A and MEP1B, for the alpha and beta subunits of the metalloendopeptidase meprin map to human chromosomes 6p and 18q, respectively. Genomics. 1995;25(1):300–3.CrossRef Bond JS, Rojas K, Overhauser J, Zoghbi HY, Jiang W. The structural genes, MEP1A and MEP1B, for the alpha and beta subunits of the metalloendopeptidase meprin map to human chromosomes 6p and 18q, respectively. Genomics. 1995;25(1):300–3.CrossRef
6.
go back to reference Jiang W, Dewald G, Brundage E, Mucher G, Schildhaus HU, Zerres K, et al. Fine mapping of MEP1A, the gene encoding the alpha subunit of the metalloendopeptidase meprin, to human chromosome 6P21. Biochem Biophys Res Commun. 1995;216(2):630–5.CrossRef Jiang W, Dewald G, Brundage E, Mucher G, Schildhaus HU, Zerres K, et al. Fine mapping of MEP1A, the gene encoding the alpha subunit of the metalloendopeptidase meprin, to human chromosome 6P21. Biochem Biophys Res Commun. 1995;216(2):630–5.CrossRef
7.
go back to reference Gorbea CM, Marchand P, Jiang W, Copeland NG, Gilbert DJ, Jenkins NA, et al. Cloning, expression, and chromosomal localization of the mouse meprin beta subunit. J Biol Chem. 1993;268(28):21035–43.PubMed Gorbea CM, Marchand P, Jiang W, Copeland NG, Gilbert DJ, Jenkins NA, et al. Cloning, expression, and chromosomal localization of the mouse meprin beta subunit. J Biol Chem. 1993;268(28):21035–43.PubMed
8.
go back to reference Mathew R, Futterweit S, Valderrama E, Tarectecan AA, Bylander JE, Bond JS, et al. Meprin-alpha in chronic diabetic nephropathy: interaction with the renin-angiotensin axis. Am J Physiol Renal Physiol. 2005;289(4):F911–21.CrossRef Mathew R, Futterweit S, Valderrama E, Tarectecan AA, Bylander JE, Bond JS, et al. Meprin-alpha in chronic diabetic nephropathy: interaction with the renin-angiotensin axis. Am J Physiol Renal Physiol. 2005;289(4):F911–21.CrossRef
9.
go back to reference Red Eagle AR, Hanson RL, Jiang W, Han X, Matters GL, Imperatore G, et al. Meprin beta metalloprotease gene polymorphisms associated with diabetic nephropathy in the Pima Indians. Hum Genet. 2005;118(1):12–22.CrossRef Red Eagle AR, Hanson RL, Jiang W, Han X, Matters GL, Imperatore G, et al. Meprin beta metalloprotease gene polymorphisms associated with diabetic nephropathy in the Pima Indians. Hum Genet. 2005;118(1):12–22.CrossRef
10.
go back to reference Takayama J, Takaoka M, Yamamoto S, Nohara A, Ohkita M, Matsumura Y. Actinonin, a meprin inhibitor, protects ischemic acute kidney injury in male but not in female rats. Eur J Pharmacol. 2008;581(1–2):157–63.CrossRef Takayama J, Takaoka M, Yamamoto S, Nohara A, Ohkita M, Matsumura Y. Actinonin, a meprin inhibitor, protects ischemic acute kidney injury in male but not in female rats. Eur J Pharmacol. 2008;581(1–2):157–63.CrossRef
11.
go back to reference Bylander J, Li Q, Ramesh G, Zhang B, Reeves WB, Bond JS. Targeted disruption of the meprin metalloproteinase beta gene protects against renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol. 2008;294(3):F480–90.CrossRef Bylander J, Li Q, Ramesh G, Zhang B, Reeves WB, Bond JS. Targeted disruption of the meprin metalloproteinase beta gene protects against renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol. 2008;294(3):F480–90.CrossRef
12.
go back to reference Conley S, Han J, Hurley S, Ongeri EM. Meprin deficient mice have a more severe form of diabetic nephropathy. FASEB J. 2013;27:702.5. Conley S, Han J, Hurley S, Ongeri EM. Meprin deficient mice have a more severe form of diabetic nephropathy. FASEB J. 2013;27:702.5.
13.
go back to reference Niyitegeka JM, Bastidas AC, Newman RH, Taylor SS, Ongeri EM. Isoform-specific interactions between meprin metalloproteases and the catalytic subunit of protein kinase a: significance in acute and chronic kidney injury. Am J Physiol Renal Physiol. 2015;308(1):F56–68.CrossRef Niyitegeka JM, Bastidas AC, Newman RH, Taylor SS, Ongeri EM. Isoform-specific interactions between meprin metalloproteases and the catalytic subunit of protein kinase a: significance in acute and chronic kidney injury. Am J Physiol Renal Physiol. 2015;308(1):F56–68.CrossRef
14.
go back to reference Ongeri EM, Anyanwu O, Reeves WB, Bond JS. Villin and actin in the mouse kidney brush-border membrane bind to and are degraded by meprins, an interaction that contributes to injury in ischemia-reperfusion. Am J Physiol Renal Physiol. 2011;301(4):F871–82.CrossRef Ongeri EM, Anyanwu O, Reeves WB, Bond JS. Villin and actin in the mouse kidney brush-border membrane bind to and are degraded by meprins, an interaction that contributes to injury in ischemia-reperfusion. Am J Physiol Renal Physiol. 2011;301(4):F871–82.CrossRef
15.
go back to reference Huguenin M, Muller EJ, Trachsel-Rosmann S, Oneda B, Ambort D, Sterchi EE, et al. The metalloprotease meprinbeta processes E-cadherin and weakens intercellular adhesion. PLoS One. 2008;3(5):e2153.CrossRef Huguenin M, Muller EJ, Trachsel-Rosmann S, Oneda B, Ambort D, Sterchi EE, et al. The metalloprotease meprinbeta processes E-cadherin and weakens intercellular adhesion. PLoS One. 2008;3(5):e2153.CrossRef
16.
go back to reference Bao J, Yura RE, Matters GL, Bradley SG, Shi P, Tian F, et al. Meprin a impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin. Am J Physiol Renal Physiol. 2013;305(5):F714–26.CrossRef Bao J, Yura RE, Matters GL, Bradley SG, Shi P, Tian F, et al. Meprin a impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin. Am J Physiol Renal Physiol. 2013;305(5):F714–26.CrossRef
17.
go back to reference George JN, Ongeri EM. Degradation of tight junction proteins in meprin betatransfected kidney cells subjected to hypoxia. Federation of American Societies for Experimental Biology; 2013. George JN, Ongeri EM. Degradation of tight junction proteins in meprin betatransfected kidney cells subjected to hypoxia. Federation of American Societies for Experimental Biology; 2013.
18.
go back to reference Herzog C, Marisiddaiah R, Haun RS, Kaushal GP. Basement membrane protein nidogen-1 is a target of meprin beta in cisplatin nephrotoxicity. Toxicol Lett. 2015;236(2):110–6.CrossRef Herzog C, Marisiddaiah R, Haun RS, Kaushal GP. Basement membrane protein nidogen-1 is a target of meprin beta in cisplatin nephrotoxicity. Toxicol Lett. 2015;236(2):110–6.CrossRef
19.
go back to reference Kaushal GP, Walker PD, Shah SV. An old enzyme with a new function: purification and characterization of a distinct matrix-degrading metalloproteinase in rat kidney cortex and its identification as meprin. J Cell Biol. 1994;126(5):1319–27.CrossRef Kaushal GP, Walker PD, Shah SV. An old enzyme with a new function: purification and characterization of a distinct matrix-degrading metalloproteinase in rat kidney cortex and its identification as meprin. J Cell Biol. 1994;126(5):1319–27.CrossRef
20.
go back to reference Walker PD, Kaushal GP, Shah SV. Meprin a, the major matrix degrading enzyme in renal tubules, produces a novel nidogen fragment in vitro and in vivo. Kidney Int. 1998;53(6):1673–80.CrossRef Walker PD, Kaushal GP, Shah SV. Meprin a, the major matrix degrading enzyme in renal tubules, produces a novel nidogen fragment in vitro and in vivo. Kidney Int. 1998;53(6):1673–80.CrossRef
21.
go back to reference Boyd S, Newman R, Ongeri E. Protein kinase C alpha is a target for the meprin B metalloproteinase (690.14). FASEB J. 2014;28(1 Supplement):690.14. Boyd S, Newman R, Ongeri E. Protein kinase C alpha is a target for the meprin B metalloproteinase (690.14). FASEB J. 2014;28(1 Supplement):690.14.
22.
go back to reference Chestukhin A, Muradov K, Litovchick L, Shaltiel S. The cleavage of protein kinase a by the kinase-splitting membranal proteinase is reproduced by meprin beta. J Biol Chem. 1996;271(47):30272–80.CrossRef Chestukhin A, Muradov K, Litovchick L, Shaltiel S. The cleavage of protein kinase a by the kinase-splitting membranal proteinase is reproduced by meprin beta. J Biol Chem. 1996;271(47):30272–80.CrossRef
23.
go back to reference Chestukhin A, Litovchick L, Muradov K, Batkin M, Shaltiel S. Unveiling the substrate specificity of meprin beta on the basis of the site in protein kinase a cleaved by the kinase splitting membranal proteinase. J Biol Chem. 1997;272(6):3153–60.CrossRef Chestukhin A, Litovchick L, Muradov K, Batkin M, Shaltiel S. Unveiling the substrate specificity of meprin beta on the basis of the site in protein kinase a cleaved by the kinase splitting membranal proteinase. J Biol Chem. 1997;272(6):3153–60.CrossRef
24.
go back to reference Herzog C, Haun RS, Kaushal V, Mayeux PR, Shah SV, Kaushal GP. Meprin a and meprin alpha generate biologically functional IL-1beta from pro-IL-1beta. Biochem Biophys Res Commun. 2009;379(4):904–8.CrossRef Herzog C, Haun RS, Kaushal V, Mayeux PR, Shah SV, Kaushal GP. Meprin a and meprin alpha generate biologically functional IL-1beta from pro-IL-1beta. Biochem Biophys Res Commun. 2009;379(4):904–8.CrossRef
25.
go back to reference Herzog C, Kaushal GP, Haun RS. Generation of biologically active interleukin-1beta by meprin B. Cytokine. 2005;31(5):394–403.CrossRef Herzog C, Kaushal GP, Haun RS. Generation of biologically active interleukin-1beta by meprin B. Cytokine. 2005;31(5):394–403.CrossRef
26.
go back to reference Keiffer TR, Bond JS. Meprin metalloproteases inactivate interleukin 6. J Biol Chem. 2014;289(11):7580–8.CrossRef Keiffer TR, Bond JS. Meprin metalloproteases inactivate interleukin 6. J Biol Chem. 2014;289(11):7580–8.CrossRef
27.
go back to reference Banerjee S, Bond JS. Prointerleukin-18 is activated by meprin beta in vitro and in vivo in intestinal inflammation. J Biol Chem. 2008;283(46):31371–7.CrossRef Banerjee S, Bond JS. Prointerleukin-18 is activated by meprin beta in vitro and in vivo in intestinal inflammation. J Biol Chem. 2008;283(46):31371–7.CrossRef
28.
go back to reference Kumar N, Nakagawa P, Janic B, Romero CA, Worou ME, Monu SR, et al. The anti-inflammatory peptide ac-SDKP is released from thymosin-beta4 by renal meprin-alpha and prolyl oligopeptidase. Am J Physiol Renal Physiol. 2016;310(10):F1026–34.CrossRef Kumar N, Nakagawa P, Janic B, Romero CA, Worou ME, Monu SR, et al. The anti-inflammatory peptide ac-SDKP is released from thymosin-beta4 by renal meprin-alpha and prolyl oligopeptidase. Am J Physiol Renal Physiol. 2016;310(10):F1026–34.CrossRef
29.
go back to reference Conley S, Martin B, Ongeri EM. Meprins cleave OS-9 present in mouse kidneys subjected to ischemia reperfusion acute kidney injury. The FASEB Journal. 2013;27:705–707. Conley S, Martin B, Ongeri EM. Meprins cleave OS-9 present in mouse kidneys subjected to ischemia reperfusion acute kidney injury. The FASEB Journal. 2013;27:705–707.
31.
go back to reference Zhao YY, Chen H, Tian T, Chen DQ, Bai X, Wei F. A pharmaco-metabonomic study on chronic kidney disease and therapeutic effect of ergone by UPLC-QTOF/HDMS. PLoS One. 2014;9(12):e115467.CrossRef Zhao YY, Chen H, Tian T, Chen DQ, Bai X, Wei F. A pharmaco-metabonomic study on chronic kidney disease and therapeutic effect of ergone by UPLC-QTOF/HDMS. PLoS One. 2014;9(12):e115467.CrossRef
32.
go back to reference Liu J, Wang C, Liu F, Lu Y, Cheng J. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy. Anal Bioanal Chem. 2015;407(9):2569–79.CrossRef Liu J, Wang C, Liu F, Lu Y, Cheng J. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy. Anal Bioanal Chem. 2015;407(9):2569–79.CrossRef
33.
go back to reference Sekula P, Goek ON, Quaye L, Barrios C, Levey AS, Romisch-Margl W, et al. A metabolome-wide association study of kidney function and disease in the general population. J Am Soc Nephrol. 2016;27(4):1175–88.CrossRef Sekula P, Goek ON, Quaye L, Barrios C, Levey AS, Romisch-Margl W, et al. A metabolome-wide association study of kidney function and disease in the general population. J Am Soc Nephrol. 2016;27(4):1175–88.CrossRef
34.
go back to reference Nkuipou-Kenfack E, Duranton F, Gayrard N, Argiles A, Lundin U, Weinberger KM, et al. Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease. PLoS One. 2014;9(5):e96955.CrossRef Nkuipou-Kenfack E, Duranton F, Gayrard N, Argiles A, Lundin U, Weinberger KM, et al. Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease. PLoS One. 2014;9(5):e96955.CrossRef
35.
go back to reference Pena MJ, Lambers Heerspink HJ, Hellemons ME, Friedrich T, Dallmann G, Lajer M, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with type 2 diabetes mellitus. Diabet Med. 2014;31(9):1138–47.CrossRef Pena MJ, Lambers Heerspink HJ, Hellemons ME, Friedrich T, Dallmann G, Lajer M, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with type 2 diabetes mellitus. Diabet Med. 2014;31(9):1138–47.CrossRef
36.
go back to reference Breit M, Weinberger KM. Metabolic biomarkers for chronic kidney disease. Arch Biochem Biophys. 2016;589:62–80.CrossRef Breit M, Weinberger KM. Metabolic biomarkers for chronic kidney disease. Arch Biochem Biophys. 2016;589:62–80.CrossRef
37.
go back to reference Zhang ZH, Wei F, Vaziri ND, Cheng XL, Bai X, Lin RC, et al. Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci Rep. 2015;5:14472.CrossRef Zhang ZH, Wei F, Vaziri ND, Cheng XL, Bai X, Lin RC, et al. Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci Rep. 2015;5:14472.CrossRef
38.
go back to reference Zhao YY, Wang HL, Cheng XL, Wei F, Bai X, Lin RC, et al. Metabolomics analysis reveals the association between lipid abnormalities and oxidative stress, inflammation, fibrosis, and Nrf2 dysfunction in aristolochic acid-induced nephropathy. Sci Rep. 2015;5:12936.CrossRef Zhao YY, Wang HL, Cheng XL, Wei F, Bai X, Lin RC, et al. Metabolomics analysis reveals the association between lipid abnormalities and oxidative stress, inflammation, fibrosis, and Nrf2 dysfunction in aristolochic acid-induced nephropathy. Sci Rep. 2015;5:12936.CrossRef
39.
go back to reference Grapov D, Fahrmann J, Hwang J, Poudel A, Jo J, Periwal V, et al. Diabetes associated Metabolomic perturbations in NOD mice. Metabolomics. 2015;11(2):425–37.CrossRef Grapov D, Fahrmann J, Hwang J, Poudel A, Jo J, Periwal V, et al. Diabetes associated Metabolomic perturbations in NOD mice. Metabolomics. 2015;11(2):425–37.CrossRef
40.
go back to reference Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton). 2007;12(3):261–6.CrossRef Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton). 2007;12(3):261–6.CrossRef
41.
go back to reference Gagnebin Y, Tonoli D, Lescuyer P, Ponte B, de Seigneux S, Martin PY, et al. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: impact of normalization strategies. Anal Chim Acta. 2017;955:27–35.CrossRef Gagnebin Y, Tonoli D, Lescuyer P, Ponte B, de Seigneux S, Martin PY, et al. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: impact of normalization strategies. Anal Chim Acta. 2017;955:27–35.CrossRef
42.
go back to reference Warrack BM, Hnatyshyn S, Ott KH, Reily MD, Sanders M, Zhang H, et al. Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(5–6):547–52.CrossRef Warrack BM, Hnatyshyn S, Ott KH, Reily MD, Sanders M, Zhang H, et al. Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(5–6):547–52.CrossRef
43.
go back to reference van der Kloet FM, Tempels FW, Ismail N, van der Heijden R, Kasper PT, Rojas-Cherto M, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 2012;8(1):109–19.CrossRef van der Kloet FM, Tempels FW, Ismail N, van der Heijden R, Kasper PT, Rojas-Cherto M, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 2012;8(1):109–19.CrossRef
44.
go back to reference Vogl FC, Mehrl S, Heizinger L, Schlecht I, Zacharias HU, Ellmann L, et al. Evaluation of dilution and normalization strategies to correct for urinary output in HPLC-HRTOFMS metabolomics. Anal Bioanal Chem. 2016;408(29):8483–93.CrossRef Vogl FC, Mehrl S, Heizinger L, Schlecht I, Zacharias HU, Ellmann L, et al. Evaluation of dilution and normalization strategies to correct for urinary output in HPLC-HRTOFMS metabolomics. Anal Bioanal Chem. 2016;408(29):8483–93.CrossRef
45.
go back to reference Ruh H, Salonikios T, Fuchser J, Schwartz M, Sticht C, Hochheim C, et al. MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease. J Lipid Res. 2013;54(10):2785–94.CrossRef Ruh H, Salonikios T, Fuchser J, Schwartz M, Sticht C, Hochheim C, et al. MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease. J Lipid Res. 2013;54(10):2785–94.CrossRef
46.
go back to reference Prox J, Arnold P, Becker-Pauly C. Meprin alpha and meprin beta: Procollagen proteinases in health and disease. Matrix Biol. 2015;44(46):7–13.CrossRef Prox J, Arnold P, Becker-Pauly C. Meprin alpha and meprin beta: Procollagen proteinases in health and disease. Matrix Biol. 2015;44(46):7–13.CrossRef
47.
go back to reference Bylander JE, Ahmed F, Conley SM, Mwiza JM, Ongeri EM. Meprin metalloprotease deficiency associated with higher mortality rates and more severe diabetic kidney injury in mice with STZ-induced type 1 diabetes. J Diabetes Res. 2017;2017:9035038.CrossRef Bylander JE, Ahmed F, Conley SM, Mwiza JM, Ongeri EM. Meprin metalloprotease deficiency associated with higher mortality rates and more severe diabetic kidney injury in mice with STZ-induced type 1 diabetes. J Diabetes Res. 2017;2017:9035038.CrossRef
48.
go back to reference Herzog C, Haun RS, Shah SV, Kaushal GP. Proteolytic processing and inactivation of CCL2/MCP-1 by meprins. Biochem Biophys Rep. 2016;8:146–50.PubMedPubMedCentral Herzog C, Haun RS, Shah SV, Kaushal GP. Proteolytic processing and inactivation of CCL2/MCP-1 by meprins. Biochem Biophys Rep. 2016;8:146–50.PubMedPubMedCentral
49.
go back to reference Banerjee S, Jin G, Bradley SG, Matters GL, Gailey RD, Crisman JM, et al. Balance of meprin a and B in mice affects the progression of experimental inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G273–82.CrossRef Banerjee S, Jin G, Bradley SG, Matters GL, Gailey RD, Crisman JM, et al. Balance of meprin a and B in mice affects the progression of experimental inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G273–82.CrossRef
50.
go back to reference Jones H, Alpini G, Francis H. Bile acid signaling and biliary functions. Acta Pharm Sin B. 2015;5(2):123–8.CrossRef Jones H, Alpini G, Francis H. Bile acid signaling and biliary functions. Acta Pharm Sin B. 2015;5(2):123–8.CrossRef
51.
go back to reference Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes. 2013;62(12):4184–91.CrossRef Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes. 2013;62(12):4184–91.CrossRef
52.
go back to reference Zhao YY, Liu J, Cheng XL, Bai X, Lin RC. Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin Chim Acta Int J Clin Chem. 2012;413(5–6):642–9.CrossRef Zhao YY, Liu J, Cheng XL, Bai X, Lin RC. Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin Chim Acta Int J Clin Chem. 2012;413(5–6):642–9.CrossRef
53.
go back to reference Zhao YY. Metabolomics in chronic kidney disease. Clin Chim Acta Int J Clin Chem. 2013;422:59–69.CrossRef Zhao YY. Metabolomics in chronic kidney disease. Clin Chim Acta Int J Clin Chem. 2013;422:59–69.CrossRef
54.
go back to reference Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, Akiyama Y, Fukuda NN, Tsukamoto H, Asaji K, Shima H, Kikuchi K, Suzuki C, Suzuki T, Tomioka Y, Soga T, Ito S, Abe T. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92:634–45. Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, Akiyama Y, Fukuda NN, Tsukamoto H, Asaji K, Shima H, Kikuchi K, Suzuki C, Suzuki T, Tomioka Y, Soga T, Ito S, Abe T. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92:634–45.
55.
go back to reference Niwa T, Aoyama I, Takayama F, Tsukushi S, Miyazaki T, Owada A, et al. Urinary indoxyl sulfate is a clinical factor that affects the progression of renal failure. Miner Electrolyte Metab. 1999;25(1–2):118–22.CrossRef Niwa T, Aoyama I, Takayama F, Tsukushi S, Miyazaki T, Owada A, et al. Urinary indoxyl sulfate is a clinical factor that affects the progression of renal failure. Miner Electrolyte Metab. 1999;25(1–2):118–22.CrossRef
56.
go back to reference Atoh K, Itoh H, Haneda M. Serum indoxyl sulfate levels in patients with diabetic nephropathy: relation to renal function. Diabetes Res Clin Pract. 2009;83(2):220–6.CrossRef Atoh K, Itoh H, Haneda M. Serum indoxyl sulfate levels in patients with diabetic nephropathy: relation to renal function. Diabetes Res Clin Pract. 2009;83(2):220–6.CrossRef
57.
go back to reference Liebich HM, Bubeck JI, Pickert A, Wahl G, Scheiter A. Hippuric acid and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid in serum and urine. Analytical approaches and clinical relevance in kidney diseases. J Chromatogr. 1990;500:615–27.CrossRef Liebich HM, Bubeck JI, Pickert A, Wahl G, Scheiter A. Hippuric acid and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid in serum and urine. Analytical approaches and clinical relevance in kidney diseases. J Chromatogr. 1990;500:615–27.CrossRef
58.
go back to reference Rhodes G, Holland ML, Wiesler D, Novotny M, Moore SA, Peterson RG, et al. Excretion of urinary volatile metabolites in response to alloxan induced diabetes of short duration in rats. J Chromatogr. 1982;228:33–42.CrossRef Rhodes G, Holland ML, Wiesler D, Novotny M, Moore SA, Peterson RG, et al. Excretion of urinary volatile metabolites in response to alloxan induced diabetes of short duration in rats. J Chromatogr. 1982;228:33–42.CrossRef
59.
go back to reference G-g W, Zhang C, X-h L, Li W. Protective effects of riboflavin on diabetic nephropathy in STZ-induced diabetic rats. Chin J Pathophysiol. 2010;7:039. G-g W, Zhang C, X-h L, Li W. Protective effects of riboflavin on diabetic nephropathy in STZ-induced diabetic rats. Chin J Pathophysiol. 2010;7:039.
60.
go back to reference Mock DM, Wang KS, Kearns GL. The pig is an appropriate model for human biotin catabolism as judged by the urinary metabolite profile of radioisotope-labeled biotin. J Nutr. 1997;127(2):365–9.CrossRef Mock DM, Wang KS, Kearns GL. The pig is an appropriate model for human biotin catabolism as judged by the urinary metabolite profile of radioisotope-labeled biotin. J Nutr. 1997;127(2):365–9.CrossRef
61.
go back to reference Schutte A, Ermund A, Becker-Pauly C, Johansson ME, Rodriguez-Pineiro AM, Backhed F, et al. Microbial-induced meprin beta cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proc Natl Acad Sci U S A. 2014;111(34):12396–401.CrossRef Schutte A, Ermund A, Becker-Pauly C, Johansson ME, Rodriguez-Pineiro AM, Backhed F, et al. Microbial-induced meprin beta cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proc Natl Acad Sci U S A. 2014;111(34):12396–401.CrossRef
62.
go back to reference Chiodini I, Adda G, Scillitani A, Coletti F, Morelli V, Di Lembo S, et al. Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care. 2007;30(1):83–8.CrossRef Chiodini I, Adda G, Scillitani A, Coletti F, Morelli V, Di Lembo S, et al. Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care. 2007;30(1):83–8.CrossRef
63.
go back to reference Meek JL, Neff NH. The rate of formation of 3-methoxy-4-hydroxyphenylethyleneglycol sulfate in brain as an estimate of the rate of formation of norepinephrine. J Pharmacol Exp Ther. 1973;184(3):570–5.PubMed Meek JL, Neff NH. The rate of formation of 3-methoxy-4-hydroxyphenylethyleneglycol sulfate in brain as an estimate of the rate of formation of norepinephrine. J Pharmacol Exp Ther. 1973;184(3):570–5.PubMed
64.
go back to reference Rhee EP, Souza A, Farrell L, Pollak MR, Lewis GD, Steele DJ, et al. Metabolite profiling identifies markers of uremia. J Am Soc Nephrol. 2010;21(6):1041–51.CrossRef Rhee EP, Souza A, Farrell L, Pollak MR, Lewis GD, Steele DJ, et al. Metabolite profiling identifies markers of uremia. J Am Soc Nephrol. 2010;21(6):1041–51.CrossRef
65.
go back to reference Beger RD, Holland RD, Sun J, Schnackenberg LK, Moore PC, Dent CL, et al. Metabonomics of acute kidney injury in children after cardiac surgery. Pediatr Nephrol. 2008;23(6):977–84.CrossRef Beger RD, Holland RD, Sun J, Schnackenberg LK, Moore PC, Dent CL, et al. Metabonomics of acute kidney injury in children after cardiac surgery. Pediatr Nephrol. 2008;23(6):977–84.CrossRef
66.
go back to reference Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics. 2007;29(2):99–108.CrossRef Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics. 2007;29(2):99–108.CrossRef
67.
go back to reference Gilbert RE. Proximal Tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes. 2017;66(4):791–800.CrossRef Gilbert RE. Proximal Tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes. 2017;66(4):791–800.CrossRef
68.
go back to reference Bhat MI, Kapila R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr Rev. 2017;75(5):374–89.CrossRef Bhat MI, Kapila R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr Rev. 2017;75(5):374–89.CrossRef
69.
go back to reference Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, Clark A, et al. Gut-microbiota-metabolite Axis in early renal function decline. PLoS One. 2015;10(8):e0134311.CrossRef Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, Clark A, et al. Gut-microbiota-metabolite Axis in early renal function decline. PLoS One. 2015;10(8):e0134311.CrossRef
Metadata
Title
Meprin β metalloproteases associated with differential metabolite profiles in the plasma and urine of mice with type 1 diabetes and diabetic nephropathy
Authors
Jessica Gooding
Lei Cao
Courtney Whitaker
Jean-Marie Mwiza
Mizpha Fernander
Faihaa Ahmed
Zach Acuff
Susan McRitchie
Susan Sumner
Elimelda Moige Ongeri
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1313-2

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue