Skip to main content
Top
Published in: BMC Medical Imaging 1/2019

Open Access 01-12-2019 | Glioma | Research article

A potential field segmentation based method for tumor segmentation on multi-parametric MRI of glioma cancer patients

Authors: Ranran Sun, Keqiang Wang, Lu Guo, Chengwen Yang, Jie Chen, Yalin Ti, Yu Sa

Published in: BMC Medical Imaging | Issue 1/2019

Login to get access

Abstract

Background

Accurate segmentation of brain tumors is vital for the gross tumor volume (GTV) definition in radiotherapy. Functional MR images like apparent diffusion constant (ADC) and fractional anisotropy (FA) images can provide more comprehensive information for sensitive detection of the GTV. We synthesize anatomical and functional MRI for accurate and semi-automatic segmentation of GTVs and improvement of clinical efficiency.

Methods

Four MR image sets including T1-weighted contrast-enhanced (T1C), T2-weighted (T2), apparent diffusion constant (ADC) and fractional anisotropy (FA) images of 5 glioma patients were acquired and registered. A new potential field segmentation (PFS) method was proposed based on the concept of potential field in physics. For T1C, T2 and ADC images, global potential field segmentation (global-PFS) was used on user defined region of interest (ROI) for rough segmentation and then morphologically processed for accurate delineation of the GTV. For FA images, white matter (WM) was removed using local potential field segmentation (local-PFS), and then tumor extent was delineated with region growing and morphological methods. The individual segmentations of multi-parametric images were ensembled into a fused segmentation, considered as final GTV. GTVs were compared with manually delineated ground truth and evaluated with segmentation quality measure (Q), Dice’s similarity coefficient (DSC) and Sensitivity and Specificity.

Results

Experimental study with the five patients’ data and new method showed that, the mean values of Q, DSC, Sensitivity and Specificity were 0.80 (±0.07), 0.88 (±0.04), 0.92 (±0.01) and 0.88 (±0.05) respectively. The global-PFS used on ROIs of T1C, T2 and ADC images can avoid interferences from skull and other non-tumor areas. Similarity to local-PFS on FA images, it can also reduce the time complexity as compared with the global-PFS on whole image sets.

Conclusions

Efficient and semi-automatic segmentation of the GTV can be achieved with the new method. Combination of anatomical and functional MR images has the potential to provide new methods and ideas for target definition in radiotherapy.
Literature
1.
go back to reference Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58:97.CrossRef Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58:97.CrossRef
2.
go back to reference Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRef Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRef
3.
go back to reference Sauwen N, Acou M, Van Cauter S, Sima DM, Veraart J, Maes F, et al. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. NeuroImage: Clin. 2016;12:753–64.CrossRef Sauwen N, Acou M, Van Cauter S, Sima DM, Veraart J, Maes F, et al. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. NeuroImage: Clin. 2016;12:753–64.CrossRef
4.
go back to reference Gregoire V, Mackie TR, Neve WD. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU. 2010;10:1–112. Gregoire V, Mackie TR, Neve WD. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU. 2010;10:1–112.
5.
go back to reference Whitfield GA, Kennedy SR, Djoukhadar IK, Jackson A. Imaging and target volume delineation in glioma. Clin Oncol. 2014;26:364–76.CrossRef Whitfield GA, Kennedy SR, Djoukhadar IK, Jackson A. Imaging and target volume delineation in glioma. Clin Oncol. 2014;26:364–76.CrossRef
6.
go back to reference Kazerooni AF, Mohseni M, Rezaei S, Bakhshandehpour G, Rad HS. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magn Reson Mater Phy. 2015;28:13–22.CrossRef Kazerooni AF, Mohseni M, Rezaei S, Bakhshandehpour G, Rad HS. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magn Reson Mater Phy. 2015;28:13–22.CrossRef
7.
go back to reference Price SJ, Jena R, Burnet NG, Hutchinson PJ, Dean AF, Pena A, et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am J Neuroradio. 2006;27:1969–74. Price SJ, Jena R, Burnet NG, Hutchinson PJ, Dean AF, Pena A, et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am J Neuroradio. 2006;27:1969–74.
8.
go back to reference Weber MA, Giesel FL, Stieltjes B. MRI for identification of progression in brain tumors: from morphology to function. Expert Rev Neurother. 2008;8:1507–25.CrossRef Weber MA, Giesel FL, Stieltjes B. MRI for identification of progression in brain tumors: from morphology to function. Expert Rev Neurother. 2008;8:1507–25.CrossRef
9.
go back to reference Guo L, Wang G, Feng Y, Yu T, Guo Y, Bai X, et al. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors. Radiat Oncol. 2016;11:123.CrossRef Guo L, Wang G, Feng Y, Yu T, Guo Y, Bai X, et al. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors. Radiat Oncol. 2016;11:123.CrossRef
10.
go back to reference Yen PS, Teo BT, Chiu CH, Chen SC, Chiu TL, Su CF. White matter tract involvement in brain tumors: a diffusion tensor imaging analysis. Surg Neurol. 2009;72:464–9.CrossRef Yen PS, Teo BT, Chiu CH, Chen SC, Chiu TL, Su CF. White matter tract involvement in brain tumors: a diffusion tensor imaging analysis. Surg Neurol. 2009;72:464–9.CrossRef
11.
go back to reference Cai H, Verma R, Ou Y, Lee S, Melhem E, Davatzikos C. Probabilistic segmentation of brain tumors based on multi-modality magnetic resonance images. Biomedical Imaging: From Nano to Macro. 2007:600–3. Cai H, Verma R, Ou Y, Lee S, Melhem E, Davatzikos C. Probabilistic segmentation of brain tumors based on multi-modality magnetic resonance images. Biomedical Imaging: From Nano to Macro. 2007:600–3.
12.
go back to reference Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imag. 2015;34:1993–2024.CrossRef Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imag. 2015;34:1993–2024.CrossRef
13.
go back to reference Abdel-Maksoud E, Elmogy M, Al-Awadi R. Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal. 2015;16:71–81.CrossRef Abdel-Maksoud E, Elmogy M, Al-Awadi R. Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal. 2015;16:71–81.CrossRef
14.
go back to reference Prastawa M, Bullitt E, Ho S, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004;8:275–83.CrossRef Prastawa M, Bullitt E, Ho S, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004;8:275–83.CrossRef
15.
go back to reference Liu J, Li M, Wang J, Wu F, Liu T, Pan Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol. 2014;19:578–95.CrossRef Liu J, Li M, Wang J, Wu F, Liu T, Pan Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol. 2014;19:578–95.CrossRef
16.
go back to reference Verma R, Zacharaki EI, Ou Y, Cai H, Chawia S, Lee S, et al. Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol. 2008;15:966–77.CrossRef Verma R, Zacharaki EI, Ou Y, Cai H, Chawia S, Lee S, et al. Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol. 2008;15:966–77.CrossRef
17.
go back to reference Iftekharuddin KM, Zheng J, Islam MA, Ogg RJ. Fractal-based brain tumor detection in multimodal MRI. Appl Math. 2009;207:23–41. Iftekharuddin KM, Zheng J, Islam MA, Ogg RJ. Fractal-based brain tumor detection in multimodal MRI. Appl Math. 2009;207:23–41.
18.
go back to reference Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Muller-Gartner HW, et al. Markov random field segmentation of brain MR images. IEEE Trans Med Imaging. 1997;16:878–86.CrossRef Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Muller-Gartner HW, et al. Markov random field segmentation of brain MR images. IEEE Trans Med Imaging. 1997;16:878–86.CrossRef
19.
go back to reference Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics. 2015;13:209–25.CrossRef Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics. 2015;13:209–25.CrossRef
20.
go back to reference Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imag. 2016;35:1240–51.CrossRef Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imag. 2016;35:1240–51.CrossRef
21.
go back to reference Crimi A, Bakas S, Kuijf H, Menze B, Reyes M. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Revised selected papers, part II; 2018.CrossRef Crimi A, Bakas S, Kuijf H, Menze B, Reyes M. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Revised selected papers, part II; 2018.CrossRef
22.
go back to reference Hua R, Huo Q, Gao Y, Sun Y, Shi F. Multimodal brain tumor segmentation using cascaded V-nets. International MICCAI Brainlesion workshop. Cham: Springer; 2018. p. 49–60. Hua R, Huo Q, Gao Y, Sun Y, Shi F. Multimodal brain tumor segmentation using cascaded V-nets. International MICCAI Brainlesion workshop. Cham: Springer; 2018. p. 49–60.
23.
go back to reference Yang HY, Yang J. Automatic brain tumor segmentation with contour aware residual network and adversarial training. International MICCAI Brainlesion workshop. Cham: Springer; 2018. p. 267–78. Yang HY, Yang J. Automatic brain tumor segmentation with contour aware residual network and adversarial training. International MICCAI Brainlesion workshop. Cham: Springer; 2018. p. 267–78.
24.
go back to reference Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv:1811.02629, 2018. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv:1811.02629, 2018.
25.
go back to reference Jones TL, Byrnes TJ, Yang G, Howe FA, Bell BA, Barrick TR. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro-Oncology. 2014;17:466–76.PubMedPubMedCentral Jones TL, Byrnes TJ, Yang G, Howe FA, Bell BA, Barrick TR. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro-Oncology. 2014;17:466–76.PubMedPubMedCentral
26.
go back to reference Cabria I, Gondra I. MRI segmentation fusion for brain tumor detection. Inform Fusion. 2017;36:1–9.CrossRef Cabria I, Gondra I. MRI segmentation fusion for brain tumor detection. Inform Fusion. 2017;36:1–9.CrossRef
27.
go back to reference Hsieh TM, Liu YM, Liao CC, Xiao F, Chiang IJ, Wong JM. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. Bmc Med Inform Decis. 2011;11:54.CrossRef Hsieh TM, Liu YM, Liao CC, Xiao F, Chiang IJ, Wong JM. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. Bmc Med Inform Decis. 2011;11:54.CrossRef
28.
go back to reference Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of MR images of brain tumors. Radiology. 2001;218:586–91.CrossRef Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of MR images of brain tumors. Radiology. 2001;218:586–91.CrossRef
29.
go back to reference Hanna GG, Hounsell AR, O’Sullivan JM. Geometrical analysis of radiotherapy target volume delineation: a systematic review of reported comparison methods. Clin Oncol. 2010;22:515–25.CrossRef Hanna GG, Hounsell AR, O’Sullivan JM. Geometrical analysis of radiotherapy target volume delineation: a systematic review of reported comparison methods. Clin Oncol. 2010;22:515–25.CrossRef
30.
go back to reference Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data. 2017;4:170117.CrossRef Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data. 2017;4:170117.CrossRef
31.
go back to reference Gooya A, Pohl KM, Bilello M, Cirillo L, Biros G, Melhem ER, et al. GLISTR: glioma image segmentation and registration. IEEE Trans Med Imag. 2012;31:1941–54.CrossRef Gooya A, Pohl KM, Bilello M, Cirillo L, Biros G, Melhem ER, et al. GLISTR: glioma image segmentation and registration. IEEE Trans Med Imag. 2012;31:1941–54.CrossRef
Metadata
Title
A potential field segmentation based method for tumor segmentation on multi-parametric MRI of glioma cancer patients
Authors
Ranran Sun
Keqiang Wang
Lu Guo
Chengwen Yang
Jie Chen
Yalin Ti
Yu Sa
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2019
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-019-0348-y

Other articles of this Issue 1/2019

BMC Medical Imaging 1/2019 Go to the issue