Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2011

Open Access 01-12-2011 | Research article

Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing

Authors: Thomas M Hsieh, Yi-Min Liu, Chun-Chih Liao, Furen Xiao, I-Jen Chiang, Jau-Min Wong

Published in: BMC Medical Informatics and Decision Making | Issue 1/2011

Login to get access

Abstract

Background

In recent years, magnetic resonance imaging (MRI) has become important in brain tumor diagnosis. Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character presented in different types of MR images.
This paper uses an algorithm integrating fuzzy-c-mean (FCM) and region growing techniques for automated tumor image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are included in the analysis. The study's aims are to correctly locate tumors in the images, and to detect those situated in the midline position of the brain.

Methods

The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from these groups and merged them into one tumor image. An alternative semi-supervised method was added at this stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology operator. Results from automatic segmentation were compared to the "ground truth" (GT) on a pixel level. Overall data were then evaluated using a quantified system.

Results

The quantified parameters, including the "percent match" (PM) and "correlation ratio" (CR), suggested a high match between GT and the present study's system, as well as a fair level of correspondence. The results were compatible with those from other related studies. The system successfully detected all of the tumors situated at the midline of brain.
Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups were highly related.

Conclusions

Results indicated that, even when using only two sets of non-contrasted MR images, the system is a reliable and efficient method of brain-tumor detection. With further development the system demonstrates high potential for practical clinical use.
Appendix
Available only for authorised users
Literature
1.
go back to reference Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML: MRI segmentation: Methods and applications. Magn Reson Imaging. 1995, 13: 343-68. 10.1016/0730-725X(94)00124-L.CrossRefPubMed Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML: MRI segmentation: Methods and applications. Magn Reson Imaging. 1995, 13: 343-68. 10.1016/0730-725X(94)00124-L.CrossRefPubMed
2.
go back to reference Wells WM, Grimson WL, Kikinis R, Jolesz FA: Adaptive segmentation of MRI data. IEEE Trans Med Imaging. 1996, 15: 429-42. 10.1109/42.511747.CrossRefPubMed Wells WM, Grimson WL, Kikinis R, Jolesz FA: Adaptive segmentation of MRI data. IEEE Trans Med Imaging. 1996, 15: 429-42. 10.1109/42.511747.CrossRefPubMed
3.
go back to reference Balafar MA, Ramli AR, Saripan MI, Mashohor S: Review of brain MRI image segmentation methods. Artif Intell Rev. 2010, 33: 261-274. 10.1007/s10462-010-9155-0.CrossRef Balafar MA, Ramli AR, Saripan MI, Mashohor S: Review of brain MRI image segmentation methods. Artif Intell Rev. 2010, 33: 261-274. 10.1007/s10462-010-9155-0.CrossRef
4.
go back to reference Xiea K, Yanga J, Zhanga ZG, Zhub YM: Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol. 2005, 56: 12-19. 10.1016/j.ejrad.2005.03.028.CrossRef Xiea K, Yanga J, Zhanga ZG, Zhub YM: Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol. 2005, 56: 12-19. 10.1016/j.ejrad.2005.03.028.CrossRef
5.
go back to reference Zhou J, Chan KL, Chong VFH, Krishnan SM: Extraction of brain tumor from MR images using one-class support vector machine. Conf Proc IEEE Eng Med Biol Soc. 2005, 6: 6411-4.PubMed Zhou J, Chan KL, Chong VFH, Krishnan SM: Extraction of brain tumor from MR images using one-class support vector machine. Conf Proc IEEE Eng Med Biol Soc. 2005, 6: 6411-4.PubMed
6.
go back to reference Ayachi R, Amor NB: Brain Tumor Segmentation Using Support Vector Machines. Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty: 1-3 July 2009; Verona, Italy. Edited by: Sossai C, Chemello G. 2009, Berlin Heidelberg: Springer-Verlag, 736-747.CrossRef Ayachi R, Amor NB: Brain Tumor Segmentation Using Support Vector Machines. Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty: 1-3 July 2009; Verona, Italy. Edited by: Sossai C, Chemello G. 2009, Berlin Heidelberg: Springer-Verlag, 736-747.CrossRef
7.
go back to reference Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, Wagner H: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int J Radia Oncol Biol Phy. 2004, 59: 300-312. 10.1016/j.ijrobp.2004.01.026.CrossRef Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, Wagner H: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int J Radia Oncol Biol Phy. 2004, 59: 300-312. 10.1016/j.ijrobp.2004.01.026.CrossRef
8.
go back to reference Letteboera MMJ, Olsenb OF, Damb EB, Willemsc PWA, Viergevera MA, Niessena WJ: Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. ACAD Radiol. 2004, 11: 1125-1138. 10.1016/j.acra.2004.05.020.CrossRef Letteboera MMJ, Olsenb OF, Damb EB, Willemsc PWA, Viergevera MA, Niessena WJ: Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. ACAD Radiol. 2004, 11: 1125-1138. 10.1016/j.acra.2004.05.020.CrossRef
9.
go back to reference Moon N, Bullitt E, Leemput KV, Gerig G: Model-based brain and tumor segmentation. Proceedings of the 16th International Conference on Pattern Recognition. 2002, 1: 528-531. Moon N, Bullitt E, Leemput KV, Gerig G: Model-based brain and tumor segmentation. Proceedings of the 16th International Conference on Pattern Recognition. 2002, 1: 528-531.
10.
go back to reference Prastawa M, Bullitt E, Ho S, Gerig G: A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004, 8: 275-283. 10.1016/j.media.2004.06.007.CrossRefPubMed Prastawa M, Bullitt E, Ho S, Gerig G: A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004, 8: 275-283. 10.1016/j.media.2004.06.007.CrossRefPubMed
11.
go back to reference Dou W, Ruan S, Chen Y, Bloyet D, Constans JM: A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vision Comput. 2007, 25: 164-171. 10.1016/j.imavis.2006.01.025.CrossRef Dou W, Ruan S, Chen Y, Bloyet D, Constans JM: A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vision Comput. 2007, 25: 164-171. 10.1016/j.imavis.2006.01.025.CrossRef
12.
go back to reference Liu J, Udupa JK, Odhner D, Hackney D, Moonis G: A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput Med Imaging Graph. 2005, 29: 21-34. 10.1016/j.compmedimag.2004.07.008.CrossRefPubMed Liu J, Udupa JK, Odhner D, Hackney D, Moonis G: A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput Med Imaging Graph. 2005, 29: 21-34. 10.1016/j.compmedimag.2004.07.008.CrossRefPubMed
13.
go back to reference Khotanlou H, Colliot O, Atif J, Bloch I: 3D brain tumor segmentation. Fuzzy Set Syst. 2009, 160: 1457-1473. 10.1016/j.fss.2008.11.016.CrossRef Khotanlou H, Colliot O, Atif J, Bloch I: 3D brain tumor segmentation. Fuzzy Set Syst. 2009, 160: 1457-1473. 10.1016/j.fss.2008.11.016.CrossRef
14.
go back to reference Khotanlou H, Atif J, Colliot O, Bloch I: 3D brain tumor segmentation using fuzzy classification and deformable models. WILF 2005, LANI 3849. Edited by: Bloch I, Petrosino A, Tettamanzi AGB. 2006, Berlin Heidelberg: Springer-Verlag, 312-318. Khotanlou H, Atif J, Colliot O, Bloch I: 3D brain tumor segmentation using fuzzy classification and deformable models. WILF 2005, LANI 3849. Edited by: Bloch I, Petrosino A, Tettamanzi AGB. 2006, Berlin Heidelberg: Springer-Verlag, 312-318.
15.
go back to reference Bezdek JC, Hall LO, Clarke LP: Review of MR image segmentation techniques using pattern recognition. Med Phys. 1993, 20: 1033-48. 10.1118/1.597000.CrossRefPubMed Bezdek JC, Hall LO, Clarke LP: Review of MR image segmentation techniques using pattern recognition. Med Phys. 1993, 20: 1033-48. 10.1118/1.597000.CrossRefPubMed
16.
go back to reference Kobashi S, Hata Y, Kitamura YT, Hayakata T, Yanagida T: Brain State Recognition Using Fuzzy C-Means (FCM) Clustering with Near Infrared Spectroscopy (NIRS). Fuzzy Days 2001 LNCS 2206. Edited by: Reusch B. 2001, Berlin Heidelberg: Springer-Verlag, 124-136. Kobashi S, Hata Y, Kitamura YT, Hayakata T, Yanagida T: Brain State Recognition Using Fuzzy C-Means (FCM) Clustering with Near Infrared Spectroscopy (NIRS). Fuzzy Days 2001 LNCS 2206. Edited by: Reusch B. 2001, Berlin Heidelberg: Springer-Verlag, 124-136.
17.
go back to reference Kannan SR, Sathya A, Ramathilagam S, Pandiyarajan R: New Robust Fuzzy C-Means Based Gaussian Function in Classifying Brain Tissue Regions. Contemporary Computing, Communications in Computer and Information Science. Edited by: Ranka S et al. 2009, Berlin Heidelberg: Springer, 40: 158-169. 10.1007/978-3-642-03547-0_16. Kannan SR, Sathya A, Ramathilagam S, Pandiyarajan R: New Robust Fuzzy C-Means Based Gaussian Function in Classifying Brain Tissue Regions. Contemporary Computing, Communications in Computer and Information Science. Edited by: Ranka S et al. 2009, Berlin Heidelberg: Springer, 40: 158-169. 10.1007/978-3-642-03547-0_16.
18.
go back to reference Clarke LP, Velthuizen RP, Clark M, Gaviria J, Hall L, Goldgof D, Murtagh R, Phuphanich S, Brem S: MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn Reson Imaging. 1998, 16: 271-279. 10.1016/S0730-725X(97)00302-0.CrossRefPubMed Clarke LP, Velthuizen RP, Clark M, Gaviria J, Hall L, Goldgof D, Murtagh R, Phuphanich S, Brem S: MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn Reson Imaging. 1998, 16: 271-279. 10.1016/S0730-725X(97)00302-0.CrossRefPubMed
19.
go back to reference Emblem KE, Nedregaard B, Hald JK, Nome T, Due-Tonnessen P, Bjornerud A: Automatic glioma characterization from dynamic susceptibility contrast imaging: Brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging. 2009, 30: 1-10. 10.1002/jmri.21815.CrossRefPubMed Emblem KE, Nedregaard B, Hald JK, Nome T, Due-Tonnessen P, Bjornerud A: Automatic glioma characterization from dynamic susceptibility contrast imaging: Brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging. 2009, 30: 1-10. 10.1002/jmri.21815.CrossRefPubMed
20.
go back to reference Wafa M, Zagrouba E: Tumor extraction from multimodal MRI. Computer Recognition Sys. 3, AISC 57. Edited by: Kurzynski M, Wozniak M. 2009, Berlin Heidelberg: Springer-Verlag, 415-422. Wafa M, Zagrouba E: Tumor extraction from multimodal MRI. Computer Recognition Sys. 3, AISC 57. Edited by: Kurzynski M, Wozniak M. 2009, Berlin Heidelberg: Springer-Verlag, 415-422.
21.
go back to reference Fletcher-Heatha LM, Halla LO, Goldgofa DB, Murtaghb FR: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med. 2001, 21: 43-63. 10.1016/S0933-3657(00)00073-7.CrossRef Fletcher-Heatha LM, Halla LO, Goldgofa DB, Murtaghb FR: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med. 2001, 21: 43-63. 10.1016/S0933-3657(00)00073-7.CrossRef
22.
go back to reference Wafa M, Zagrouba E: Improved fuzzy-c-means for noisy image segmentation. SIGMAP. 2009, 74-78. Wafa M, Zagrouba E: Improved fuzzy-c-means for noisy image segmentation. SIGMAP. 2009, 74-78.
23.
go back to reference Veloz A, Chabert S, Salas R, Orellana A, Vielma J: Fuzzy spatial growing for glioblastoma multiforme segmentation on brain magnetic resonance imaging. CIARP 2007, LNCS 4756. Edited by: Rueda L, Mery D, Kittler J. 2007, Berlin Heidelberg: Springer-Verlag, 861-870. Veloz A, Chabert S, Salas R, Orellana A, Vielma J: Fuzzy spatial growing for glioblastoma multiforme segmentation on brain magnetic resonance imaging. CIARP 2007, LNCS 4756. Edited by: Rueda L, Mery D, Kittler J. 2007, Berlin Heidelberg: Springer-Verlag, 861-870.
24.
go back to reference Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ: Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imag Grap. 2006, 30: 9-15. 10.1016/j.compmedimag.2005.10.001.CrossRef Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ: Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imag Grap. 2006, 30: 9-15. 10.1016/j.compmedimag.2005.10.001.CrossRef
25.
go back to reference Li Y, Shen Y: Fuzzy c-means clustering based on spatial neighborhood information for image segmentation. J Syst Eng Electron. 2010, 21: 323-328.CrossRef Li Y, Shen Y: Fuzzy c-means clustering based on spatial neighborhood information for image segmentation. J Syst Eng Electron. 2010, 21: 323-328.CrossRef
26.
go back to reference Taylor SL, Barakos JA, Harsh GR, Wilson CB: Magnetic resonance imaging of Tuberculum Sellae meningiomas. Neurosurgery. 1992, 31: 621-627. 10.1227/00006123-199210000-00002.CrossRefPubMed Taylor SL, Barakos JA, Harsh GR, Wilson CB: Magnetic resonance imaging of Tuberculum Sellae meningiomas. Neurosurgery. 1992, 31: 621-627. 10.1227/00006123-199210000-00002.CrossRefPubMed
27.
go back to reference Chi JH, Parsa AT, Berger MS, Kunwar S, McDermott MW: Extended bifrontal craniotomy for midline anterior fossa meningiomas: minimization of retraction-related edema and surgical outcomes. Neurosurgery. 2006, 59: 426-434. 10.1227/01.NEU.0000223497.06588.4A.CrossRef Chi JH, Parsa AT, Berger MS, Kunwar S, McDermott MW: Extended bifrontal craniotomy for midline anterior fossa meningiomas: minimization of retraction-related edema and surgical outcomes. Neurosurgery. 2006, 59: 426-434. 10.1227/01.NEU.0000223497.06588.4A.CrossRef
28.
go back to reference Clark MC, Hall LO, Goldgof DB, Velthuizen R, Reed F, Silbiger MS: Automatic tumor segmentation using knowledge-based techniques. IEEE T Med Imaging. 1998, 17: 187-201. 10.1109/42.700731.CrossRef Clark MC, Hall LO, Goldgof DB, Velthuizen R, Reed F, Silbiger MS: Automatic tumor segmentation using knowledge-based techniques. IEEE T Med Imaging. 1998, 17: 187-201. 10.1109/42.700731.CrossRef
29.
go back to reference Zhou J, Lim T, Chong V, Huang J: Segmentation and visualization of nasopharyngeal carcinoma using MRI. Comput Biol Med. 2003, 33: 407-424. 10.1016/S0010-4825(03)00018-0.CrossRefPubMed Zhou J, Lim T, Chong V, Huang J: Segmentation and visualization of nasopharyngeal carcinoma using MRI. Comput Biol Med. 2003, 33: 407-424. 10.1016/S0010-4825(03)00018-0.CrossRefPubMed
30.
go back to reference Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxes D, Whitaker R: Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK - The Insight Toolkit. Proc of Medicine Meets Virtual Reality. Edited by: Westwood J. 2002, Amsterdam: IOS Press, 586-592. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxes D, Whitaker R: Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK - The Insight Toolkit. Proc of Medicine Meets Virtual Reality. Edited by: Westwood J. 2002, Amsterdam: IOS Press, 586-592.
31.
go back to reference Wang Z, Hu Q, Loe KF, Aziz A, Nowinski WL: Rapid and automatic detection of brain tumors in MR images. Proceedings of the SPIE 2004. Edited by: Amini AA, Manduca A. 2004, 5369: 602-612. Wang Z, Hu Q, Loe KF, Aziz A, Nowinski WL: Rapid and automatic detection of brain tumors in MR images. Proceedings of the SPIE 2004. Edited by: Amini AA, Manduca A. 2004, 5369: 602-612.
32.
go back to reference Duda RO, Hart PE, Stork DG: Pattern Classification. 2000, New York: Wiley, 2 Duda RO, Hart PE, Stork DG: Pattern Classification. 2000, New York: Wiley, 2
Metadata
Title
Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing
Authors
Thomas M Hsieh
Yi-Min Liu
Chun-Chih Liao
Furen Xiao
I-Jen Chiang
Jau-Min Wong
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2011
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/1472-6947-11-54

Other articles of this Issue 1/2011

BMC Medical Informatics and Decision Making 1/2011 Go to the issue