Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Software

ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies

Authors: Samuel R. Barnes, Thomas S. C. Ng, Naomi Santa-Maria, Axel Montagne, Berislav V. Zlokovic, Russell E. Jacobs

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis.

Results

ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model.

Conclusion

A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI.
A public release of ROCKETSHIP is available at https://​github.​com/​petmri/​ROCKETSHIP.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parker GJ, Padhani AR. T1‐W DCE‐MRI: T1‐Weighted Dynamic Contrast‐Enhanced MRI, Quantitative MRI of the Brain: Measuring Changes Caused by Disease. 2004. p. 341–64. Parker GJ, Padhani AR. T1‐W DCE‐MRI: T1‐Weighted Dynamic Contrast‐Enhanced MRI, Quantitative MRI of the Brain: Measuring Changes Caused by Disease. 2004. p. 341–64.
2.
go back to reference Cuenod C, Fournier L, Balvay D, Guinebretiere J-M. Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging. 2006;31(2):188–93.PubMedCrossRef Cuenod C, Fournier L, Balvay D, Guinebretiere J-M. Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging. 2006;31(2):188–93.PubMedCrossRef
3.
go back to reference Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol. 2006;24(20):3293–8.PubMedCrossRef Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol. 2006;24(20):3293–8.PubMedCrossRef
4.
go back to reference O’Connor JP, Jackson A, Parker GJ, Jayson GC. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer. 2007;96(2):189–95.PubMedPubMedCentralCrossRef O’Connor JP, Jackson A, Parker GJ, Jayson GC. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer. 2007;96(2):189–95.PubMedPubMedCentralCrossRef
5.
go back to reference Frias AE, Schabel MC, Roberts VHJ, Tudorica A, Grigsby PL, Oh KY, et al. Using dynamic contrast-enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta. Magn Reson Med. 2014;1570–1578. Frias AE, Schabel MC, Roberts VHJ, Tudorica A, Grigsby PL, Oh KY, et al. Using dynamic contrast-enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta. Magn Reson Med. 2014;1570–1578.
6.
go back to reference Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-Brain Barrier Breakdown in the Aging Human Hippocampus. Neuron. 2015;85(2):296–302.PubMedPubMedCentralCrossRef Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-Brain Barrier Breakdown in the Aging Human Hippocampus. Neuron. 2015;85(2):296–302.PubMedPubMedCentralCrossRef
7.
go back to reference Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med. 2009;62(1):205–17.PubMedCrossRef Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med. 2009;62(1):205–17.PubMedCrossRef
8.
go back to reference Strijkers GJ, Mulder WJ, van Tilborg GA, Nicolay K. MRI Contrast Agents: Current Status and Future Perspectives. Anticancer Agents Med Chem. 2007;7(3):291–305.PubMedCrossRef Strijkers GJ, Mulder WJ, van Tilborg GA, Nicolay K. MRI Contrast Agents: Current Status and Future Perspectives. Anticancer Agents Med Chem. 2007;7(3):291–305.PubMedCrossRef
9.
go back to reference Di Giovanni P, Azlan CA, Ahearn TS, Semple SI, Gilbert FJ, Redpath TW. The accuracy of pharmacokinetic parameter measurement in DCE-MRI of the breast at 3 T. Phys Med Biol. 2010;55(1):121.PubMedCrossRef Di Giovanni P, Azlan CA, Ahearn TS, Semple SI, Gilbert FJ, Redpath TW. The accuracy of pharmacokinetic parameter measurement in DCE-MRI of the breast at 3 T. Phys Med Biol. 2010;55(1):121.PubMedCrossRef
10.
go back to reference Chassidim Y, Veksler R, Lublinsky S, Pell GS, Friedman A, Shelef I. Quantitative imaging assessment of blood-brain barrier permeability in humans. Fluids Barriers CNS. 2013;10(1):9.PubMedPubMedCentralCrossRef Chassidim Y, Veksler R, Lublinsky S, Pell GS, Friedman A, Shelef I. Quantitative imaging assessment of blood-brain barrier permeability in humans. Fluids Barriers CNS. 2013;10(1):9.PubMedPubMedCentralCrossRef
11.
go back to reference Chih‐Feng C, Ling‐Wei H, Chun‐Chung L, Chen‐Chang L, Hsu‐Huei W, Yuan‐Hsiung T, et al. In vivo correlation between semi‐quantitative hemodynamic parameters and Ktrans derived from DCE‐MRI of brain tumors. Int J Imag Syst Tech. 2012;22(2):132–6.CrossRef Chih‐Feng C, Ling‐Wei H, Chun‐Chung L, Chen‐Chang L, Hsu‐Huei W, Yuan‐Hsiung T, et al. In vivo correlation between semi‐quantitative hemodynamic parameters and Ktrans derived from DCE‐MRI of brain tumors. Int J Imag Syst Tech. 2012;22(2):132–6.CrossRef
12.
go back to reference Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 2013;26(8):1004–27.PubMedCrossRef Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 2013;26(8):1004–27.PubMedCrossRef
13.
go back to reference Jackson A, Li K-L, Zhu X. Semi-Quantitative Parameter Analysis of DCE-MRI Revisited: Monte-Carlo Simulation, Clinical Comparisons, and Clinical Validation of Measurement Errors in Patients with Type 2 Neurofibromatosis. PLoS One. 2014;9(3), e90300.PubMedPubMedCentralCrossRef Jackson A, Li K-L, Zhu X. Semi-Quantitative Parameter Analysis of DCE-MRI Revisited: Monte-Carlo Simulation, Clinical Comparisons, and Clinical Validation of Measurement Errors in Patients with Type 2 Neurofibromatosis. PLoS One. 2014;9(3), e90300.PubMedPubMedCentralCrossRef
14.
go back to reference Koh TS, Bisdas S, Koh DM, Thng CH. Fundamentals of tracer kinetics for dynamic contrast‐enhanced MRI. J Magn Reson Imaging. 2011;34(6):1262–76.PubMedCrossRef Koh TS, Bisdas S, Koh DM, Thng CH. Fundamentals of tracer kinetics for dynamic contrast‐enhanced MRI. J Magn Reson Imaging. 2011;34(6):1262–76.PubMedCrossRef
15.
go back to reference Parker GJM, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med. 2006;56(5):993–1000.PubMedCrossRef Parker GJM, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med. 2006;56(5):993–1000.PubMedCrossRef
16.
go back to reference Heye T, Boll DT, Reiner CS, Bashir MR, Dale BM, Merkle EM. Impact of precontrast T10 relaxation times on dynamic contrast‐enhanced MRI pharmacokinetic parameters: T10 mapping versus a fixed T10 reference value. J Magn Reson Imaging. 2013;39(5):1136–45.CrossRef Heye T, Boll DT, Reiner CS, Bashir MR, Dale BM, Merkle EM. Impact of precontrast T10 relaxation times on dynamic contrast‐enhanced MRI pharmacokinetic parameters: T10 mapping versus a fixed T10 reference value. J Magn Reson Imaging. 2013;39(5):1136–45.CrossRef
17.
go back to reference Srikanchana R, Thomasson D, Choyke P, Dwyer A. A comparison of Pharmacokinetic Models of Dynamic Contrast Enhanced MRI. In: Computer-Based Medical Systems, 2004 CBMS 2004 Proceedings 17th IEEE Symposium on: 24-25 June 2004 2004. 2004. p. 361–6. Srikanchana R, Thomasson D, Choyke P, Dwyer A. A comparison of Pharmacokinetic Models of Dynamic Contrast Enhanced MRI. In: Computer-Based Medical Systems, 2004 CBMS 2004 Proceedings 17th IEEE Symposium on: 24-25 June 2004 2004. 2004. p. 361–6.
18.
go back to reference Cramer SP, Larsson HB. Accurate determination of blood-brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI: a simulation and in vivo study on healthy subjects and multiple sclerosis patients. J Cereb Blood Flow Metab. 2014;34(10):1655–65.PubMedPubMedCentralCrossRef Cramer SP, Larsson HB. Accurate determination of blood-brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI: a simulation and in vivo study on healthy subjects and multiple sclerosis patients. J Cereb Blood Flow Metab. 2014;34(10):1655–65.PubMedPubMedCentralCrossRef
19.
go back to reference Zloković BV, Lipovac MN, Begley DJ, Davson H, Rakić L. Transport of Leucine-Enkephalin Across the Blood-Brain Barrier in the Perfused Guinea Pig Brain. J Neurochem. 1987;49(1):310–5.PubMedCrossRef Zloković BV, Lipovac MN, Begley DJ, Davson H, Rakić L. Transport of Leucine-Enkephalin Across the Blood-Brain Barrier in the Perfused Guinea Pig Brain. J Neurochem. 1987;49(1):310–5.PubMedCrossRef
20.
go back to reference Zlokovic BV, Begley DJ, Chain-Eliash DG. Blood-brain barrier permeability to leucine-enkephalin, d-Alanine2-d-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res. 1985;336(1):125–32.PubMedCrossRef Zlokovic BV, Begley DJ, Chain-Eliash DG. Blood-brain barrier permeability to leucine-enkephalin, d-Alanine2-d-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res. 1985;336(1):125–32.PubMedCrossRef
21.
go back to reference Zlokovic B. Cerebrovascular Permeability to Peptides: Manipulations of Transport Systems at the Blood-Brain Barrier. Pharm Res. 1995;12(10):1395–406.PubMedCrossRef Zlokovic B. Cerebrovascular Permeability to Peptides: Manipulations of Transport Systems at the Blood-Brain Barrier. Pharm Res. 1995;12(10):1395–406.PubMedCrossRef
22.
go back to reference Larsson HB, Courivaud F, Rostrup E, Hansen AE. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med. 2009;62(5):1270–81.PubMedCrossRef Larsson HB, Courivaud F, Rostrup E, Hansen AE. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med. 2009;62(5):1270–81.PubMedCrossRef
23.
go back to reference Ewing JR, Bagher-Ebadian H. Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: experimental and clinical applications. NMR Biomed. 2013;26(8):1028–41.PubMedPubMedCentralCrossRef Ewing JR, Bagher-Ebadian H. Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: experimental and clinical applications. NMR Biomed. 2013;26(8):1028–41.PubMedPubMedCentralCrossRef
24.
go back to reference Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, et al. Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab. 2006;26(3):310–20.PubMedCrossRef Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, et al. Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab. 2006;26(3):310–20.PubMedCrossRef
25.
go back to reference Stefanovski D, Moate PJ, Boston RC. WinSAAM: a windows-based compartmental modeling system. Metabolism. 2003;52(9):1153–66.PubMedCrossRef Stefanovski D, Moate PJ, Boston RC. WinSAAM: a windows-based compartmental modeling system. Metabolism. 2003;52(9):1153–66.PubMedCrossRef
26.
go back to reference Barrett PHR, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, et al. SAAM II: Simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism. 1998;47(4):484–92.PubMedCrossRef Barrett PHR, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, et al. SAAM II: Simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism. 1998;47(4):484–92.PubMedCrossRef
27.
go back to reference Heye T, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Bashir MR, et al. Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology. 2013;266(3):801–11.PubMedCrossRef Heye T, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Bashir MR, et al. Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology. 2013;266(3):801–11.PubMedCrossRef
28.
go back to reference Smith DS, Li X, Arlinghaus LR, Yankeelov TE, Welch EB. DCEMRI.jl: A fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis. PeerJ Pre Prints. 2014;2:e670v671. Smith DS, Li X, Arlinghaus LR, Yankeelov TE, Welch EB. DCEMRI.jl: A fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis. PeerJ Pre Prints. 2014;2:e670v671.
29.
go back to reference Cetin O. An analysis tool to calculate permeability based on the Patlak method. J Med Syst. 2012;36(3):1317–26.PubMedCrossRef Cetin O. An analysis tool to calculate permeability based on the Patlak method. J Med Syst. 2012;36(3):1317–26.PubMedCrossRef
30.
go back to reference Barboriak DP, MacFall JR, Padua AO, York GE, Viglianti BL, Dewhirst MW. Standardized software for calculation of Ktrans and vp from dynamic T1-weighted MR images. In: International Society for Magnetic Resonance in Medicine Workshop on MR in Drug Development: From Discovery to Clinical Therapeutic Trials: 2004; McLean, VA; 2004. Barboriak DP, MacFall JR, Padua AO, York GE, Viglianti BL, Dewhirst MW. Standardized software for calculation of Ktrans and vp from dynamic T1-weighted MR images. In: International Society for Magnetic Resonance in Medicine Workshop on MR in Drug Development: From Discovery to Clinical Therapeutic Trials: 2004; McLean, VA; 2004.
31.
go back to reference Whitcher B, Schmid VJ. Quantitative analysis of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for oncology in R. J Stat Softw. 2011;44(5):1–29.CrossRef Whitcher B, Schmid VJ. Quantitative analysis of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for oncology in R. J Stat Softw. 2011;44(5):1–29.CrossRef
32.
go back to reference Ferl GZ. DATforDCEMRI: an R package for deconvolution analysis and visualization of DCE-MRI data. J Stat Softw. 2011;44(3):1–18.CrossRef Ferl GZ. DATforDCEMRI: an R package for deconvolution analysis and visualization of DCE-MRI data. J Stat Softw. 2011;44(3):1–18.CrossRef
33.
go back to reference Ortuno JE, Ledesma-Carbayo MJ, Simoes RV, Candiota AP, Arus C, Santos A. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinformatics. 2013;14:316.PubMedPubMedCentralCrossRef Ortuno JE, Ledesma-Carbayo MJ, Simoes RV, Candiota AP, Arus C, Santos A. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinformatics. 2013;14:316.PubMedPubMedCentralCrossRef
34.
go back to reference Zollner FG, Weisser G, Reich M, Kaiser S, Schoenberg SO, Sourbron SP, et al. UMMPerfusion: an open source software tool towards quantitative MRI perfusion analysis in clinical routine. J Digit Imaging. 2013;26(2):344–52.PubMedCrossRef Zollner FG, Weisser G, Reich M, Kaiser S, Schoenberg SO, Sourbron SP, et al. UMMPerfusion: an open source software tool towards quantitative MRI perfusion analysis in clinical routine. J Digit Imaging. 2013;26(2):344–52.PubMedCrossRef
35.
go back to reference Balvay D, Frouin F, Calmon G, Bessoud B, Kahn E, Siauve N, et al. New criteria for assessing fit quality in dynamic contrast-enhanced T1-weighted MRI for perfusion and permeability imaging. Magn Reson Med. 2005;54(4):868–77.PubMedCrossRef Balvay D, Frouin F, Calmon G, Bessoud B, Kahn E, Siauve N, et al. New criteria for assessing fit quality in dynamic contrast-enhanced T1-weighted MRI for perfusion and permeability imaging. Magn Reson Med. 2005;54(4):868–77.PubMedCrossRef
36.
go back to reference Khalifa F, Soliman A, El-Baz A, El-Ghar MA, El-Diasty T, Gimel’farb G, et al. Models and methods for analyzing DCE-MRI: A review. Med Phys. 2014;41(12):124301.PubMedCrossRef Khalifa F, Soliman A, El-Baz A, El-Ghar MA, El-Diasty T, Gimel’farb G, et al. Models and methods for analyzing DCE-MRI: A review. Med Phys. 2014;41(12):124301.PubMedCrossRef
37.
go back to reference Bagher-Ebadian H, Jain R, Nejad-Davarani SP, Mikkelsen T, Lu M, Jiang Q, et al. Model Selection for DCE-T1 Studies in Glioblastoma. Magn Reson Med. 2012;68(1):241–51.PubMedCrossRef Bagher-Ebadian H, Jain R, Nejad-Davarani SP, Mikkelsen T, Lu M, Jiang Q, et al. Model Selection for DCE-T1 Studies in Glioblastoma. Magn Reson Med. 2012;68(1):241–51.PubMedCrossRef
38.
go back to reference Huang W, Li X, Chen Y, Li X, Chang MC, Oborski MJ, et al. Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol. 2014;7(1):153–66.PubMedPubMedCentralCrossRef Huang W, Li X, Chen Y, Li X, Chang MC, Oborski MJ, et al. Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol. 2014;7(1):153–66.PubMedPubMedCentralCrossRef
39.
go back to reference Kim H, Folks KD, Guo L, Stockard CR, Fineberg NS, Grizzle WE, et al. DCE-MRI detects early vascular response in breast tumor xenografts following anti-DR5 therapy. Mol Imaging Biol. 2011;13(1):94–103.PubMedPubMedCentralCrossRef Kim H, Folks KD, Guo L, Stockard CR, Fineberg NS, Grizzle WE, et al. DCE-MRI detects early vascular response in breast tumor xenografts following anti-DR5 therapy. Mol Imaging Biol. 2011;13(1):94–103.PubMedPubMedCentralCrossRef
40.
go back to reference Yankeelov TE, DeBusk LM, Billheimer DD, Luci JJ, Lin PC, Price RR, et al. Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T. J Magn Reson Imaging. 2006;24(5):1140–7.PubMedCrossRef Yankeelov TE, DeBusk LM, Billheimer DD, Luci JJ, Lin PC, Price RR, et al. Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T. J Magn Reson Imaging. 2006;24(5):1140–7.PubMedCrossRef
41.
go back to reference Loveless ME, Lawson D, Collins M, Nadella MV, Reimer C, Huszar D, et al. Comparisons of the efficacy of a Jak1/2 inhibitor (AZD1480) with a VEGF signaling inhibitor (cediranib) and sham treatments in mouse tumors using DCE-MRI, DW-MRI, and histology. Neoplasia. 2012;14(1):54–64.PubMedPubMedCentralCrossRef Loveless ME, Lawson D, Collins M, Nadella MV, Reimer C, Huszar D, et al. Comparisons of the efficacy of a Jak1/2 inhibitor (AZD1480) with a VEGF signaling inhibitor (cediranib) and sham treatments in mouse tumors using DCE-MRI, DW-MRI, and histology. Neoplasia. 2012;14(1):54–64.PubMedPubMedCentralCrossRef
42.
go back to reference Anderson KB, Conder JA. Discussion of Multicyclic Hubbert Modeling as a Method for Forecasting Future Petroleum Production. Energy Fuels. 2011;25(4):1578–84.CrossRef Anderson KB, Conder JA. Discussion of Multicyclic Hubbert Modeling as a Method for Forecasting Future Petroleum Production. Energy Fuels. 2011;25(4):1578–84.CrossRef
43.
go back to reference Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys. 2007;34(11):4285–92.PubMedCrossRef Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys. 2007;34(11):4285–92.PubMedCrossRef
44.
go back to reference Motulsky H, Christopoulos A. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting: Oxford University Press; 2004. Motulsky H, Christopoulos A. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting: Oxford University Press; 2004.
45.
go back to reference Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68.PubMedCrossRef Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68.PubMedCrossRef
46.
go back to reference Li K-L, Wilmes LJ, Henry RG, Pallavicini MG, Park JW, Hu-Lowe DD, et al. Heterogeneity in the angiogenic response of a BT474 human breast cancer to a novel vascular endothelial growth factor-receptor tyrosine kinase inhibitor: Assessment by voxel analysis of dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2005;22(4):511–9.PubMedCrossRef Li K-L, Wilmes LJ, Henry RG, Pallavicini MG, Park JW, Hu-Lowe DD, et al. Heterogeneity in the angiogenic response of a BT474 human breast cancer to a novel vascular endothelial growth factor-receptor tyrosine kinase inhibitor: Assessment by voxel analysis of dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2005;22(4):511–9.PubMedCrossRef
47.
go back to reference Henderson E, Rutt BK, Lee TY. Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging. 1998;16(9):1057–73.PubMedCrossRef Henderson E, Rutt BK, Lee TY. Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging. 1998;16(9):1057–73.PubMedCrossRef
48.
go back to reference Larsson C, Kleppesto M, Rasmussen Jr I, Salo R, Vardal J, Brandal P, et al. Sampling requirements in DCE-MRI based analysis of high grade gliomas: simulations and clinical results. J Magn Reson Imaging. 2013;37(4):818–29.PubMedCrossRef Larsson C, Kleppesto M, Rasmussen Jr I, Salo R, Vardal J, Brandal P, et al. Sampling requirements in DCE-MRI based analysis of high grade gliomas: simulations and clinical results. J Magn Reson Imaging. 2013;37(4):818–29.PubMedCrossRef
49.
go back to reference Ng TS, Wert D, Sohi H, Procissi D, Colcher D, Raubitschek AA, et al. Serial diffusion MRI to monitor and model treatment response of the targeted nanotherapy CRLX101. Clin Cancer Res. 2013;19(9):2518–27.PubMedPubMedCentralCrossRef Ng TS, Wert D, Sohi H, Procissi D, Colcher D, Raubitschek AA, et al. Serial diffusion MRI to monitor and model treatment response of the targeted nanotherapy CRLX101. Clin Cancer Res. 2013;19(9):2518–27.PubMedPubMedCentralCrossRef
50.
go back to reference McGrath DM, Bradley DP, Tessier JL, Lacey T, Taylor CJ, Parker GJ. Comparison of model‐based arterial input functions for dynamic contrast‐enhanced MRI in tumor bearing rats. Magn Reson Med. 2009;61(5):1173–84.PubMedCrossRef McGrath DM, Bradley DP, Tessier JL, Lacey T, Taylor CJ, Parker GJ. Comparison of model‐based arterial input functions for dynamic contrast‐enhanced MRI in tumor bearing rats. Magn Reson Med. 2009;61(5):1173–84.PubMedCrossRef
51.
go back to reference Huang W, Li X, Morris EA, Tudorica LA, Seshan VE, Rooney WD, et al. The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo. Proc Natl Acad Sci U S A. 2008;105(46):17943–8.PubMedPubMedCentralCrossRef Huang W, Li X, Morris EA, Tudorica LA, Seshan VE, Rooney WD, et al. The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo. Proc Natl Acad Sci U S A. 2008;105(46):17943–8.PubMedPubMedCentralCrossRef
52.
go back to reference Paudyal R, Poptani H, Cai K, Zhou R, Glickson JD. Impact of transvascular and cellular–interstitial water exchange on dynamic contrast-enhanced magnetic resonance imaging estimates of blood to tissue transfer constant and blood plasma volume. J Magn Reson Imaging. 2013;37(2):435–44.PubMedCrossRef Paudyal R, Poptani H, Cai K, Zhou R, Glickson JD. Impact of transvascular and cellular–interstitial water exchange on dynamic contrast-enhanced magnetic resonance imaging estimates of blood to tissue transfer constant and blood plasma volume. J Magn Reson Imaging. 2013;37(2):435–44.PubMedCrossRef
53.
go back to reference Li X, Rooney WD, Springer Jr CS. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn Reson Med. 2005;54(6):1351–9.PubMedCrossRef Li X, Rooney WD, Springer Jr CS. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn Reson Med. 2005;54(6):1351–9.PubMedCrossRef
54.
go back to reference Zhou R, Pickup S, Yankeelov TE, Springer CS, Glickson JD. Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: Effects of transcytolemmal water exchange. Magn Reson Med. 2004;52(2):248–57.PubMedCrossRef Zhou R, Pickup S, Yankeelov TE, Springer CS, Glickson JD. Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: Effects of transcytolemmal water exchange. Magn Reson Med. 2004;52(2):248–57.PubMedCrossRef
Metadata
Title
ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies
Authors
Samuel R. Barnes
Thomas S. C. Ng
Naomi Santa-Maria
Axel Montagne
Berislav V. Zlokovic
Russell E. Jacobs
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0062-3

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue