Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Technical advance

Improved R2* liver iron concentration assessment using a novel fuzzy c-mean clustering scheme

Authors: Pairash Saiviroonporn, Vip Viprakasit, Rungroj Krittayaphong

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

In thalassemia patients, R2* liver iron concentration (LIC) measurement is a common clinical tool for assessing iron overload and for determining necessary chelator dose and evaluating its efficacy. Despite the importance of accurate LIC measurement, existing methods suffer from LIC variability, especially at the severe iron overload range due to inclusion of vessel parts in LIC calculation. In this study, we build upon previous Fuzzy C-Mean (FCM) clustering work to formulate a scheme with superior performance in segmenting vessel pixels from the parenchyma. Our method (MIX-FCM) combines our novel 2D-FCM with the existing 1D-FCM algorithm. This study further assessed possible optimal clustering parameters (OP scheme) and proposed a semi-automatic (SA) scheme for routine clinical application.

Methods

Segmentation of liver parenchyma and vessels was performed on T2* images and their LIC maps in 196 studies from 147 thalassemia major patients. We used manual segmentation as the reference. 1D-FCM clustering was performed on the acquired image alone and 2D-FCM used both the acquired image and its LIC data. To execute the MIX-FCM method, the best outcome (OP-MIX-FCM) was selected from the aforementioned methods and was compared to the SA-MIX-FCM scheme. We used the percent value of the normalized interquartile range (nIQR) to its median to evaluate the variability of all methods.

Results

2D-FCM clustering is more effective than 1D-FCM clustering at the severe overload range only, but inferior for other ranges (where 1D-FCM provides suitable results). This complementary performance between the two methods allows MIX-FCM to improve results for all ranges. OP-MIX-FCM clustering error was 2.1 ± 2.3 %, compared with 10.3 ± 9.9 % and 7.0 ± 11.9 % from 1D- and 2D-FCM clustering, respectively. SA-MIX-FCM result was comparable to OP-MIX-FCM result, with both schemes showing ability to decrease overall nIQR by approximately 30 %.

Conclusion

Our proposed 2D-FCM algorithm is not as superior to 1D-FCM as hypothesized. In contrast, our MIX-FCM method benefits from the best of both methods to obtain the highest segmentation accuracy at all ranges. Moreover, segmentation accuracy of the practical scheme (SA-MIX-FCM) is comparable to segmentation accuracy of the reference scheme (OP-MIX-FCM). Finally, we confirmed that segmentation is crucial to improving LIC assessments, especially at the severe iron overload range.
Literature
1.
go back to reference Cohen AR, Galanello R, Pennell DJ, Cunningham MJ, Vichinsky E. Thalassemia. Hematology Am Soc Hematol Educ Program. 2004:14–34. Cohen AR, Galanello R, Pennell DJ, Cunningham MJ, Vichinsky E. Thalassemia. Hematology Am Soc Hematol Educ Program. 2004:14–34.
3.
go back to reference Anderson LJ. Assessment of iron overload with T2* magnetic resonance imaging. Prog Cardiovasc Dis. 2011;54(3):287–94.CrossRefPubMed Anderson LJ. Assessment of iron overload with T2* magnetic resonance imaging. Prog Cardiovasc Dis. 2011;54(3):287–94.CrossRefPubMed
4.
go back to reference Taher AT, Musallam KM, Wood JC, Cappellini MD. Magnetic resonance evaluation of hepatic and myocardial iron deposition in transfusion-independent thalassemia intermedia compared to regularly transfused thalassemia major patients. Am J Hematol. 2010;85(4):288–90.CrossRefPubMed Taher AT, Musallam KM, Wood JC, Cappellini MD. Magnetic resonance evaluation of hepatic and myocardial iron deposition in transfusion-independent thalassemia intermedia compared to regularly transfused thalassemia major patients. Am J Hematol. 2010;85(4):288–90.CrossRefPubMed
5.
go back to reference Wood JC, Ghugre N. Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases. Hemoglobin. 2008;32(1–2):85–96.CrossRefPubMedPubMedCentral Wood JC, Ghugre N. Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases. Hemoglobin. 2008;32(1–2):85–96.CrossRefPubMedPubMedCentral
6.
go back to reference Angelucci E, Barosi G, Camaschella C, Cappellini MD, Cazzola M, Galanello R, et al. Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders. Haematologica. 2008;93(5):741–52.CrossRefPubMed Angelucci E, Barosi G, Camaschella C, Cappellini MD, Cazzola M, Galanello R, et al. Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders. Haematologica. 2008;93(5):741–52.CrossRefPubMed
7.
go back to reference Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–9.CrossRefPubMed Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–9.CrossRefPubMed
8.
go back to reference St Pierre TG, Clark PR, Chua-Anusorn W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann N Y Acad Sci. 2005;1054:379–85.CrossRefPubMed St Pierre TG, Clark PR, Chua-Anusorn W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann N Y Acad Sci. 2005;1054:379–85.CrossRefPubMed
9.
go back to reference Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion- dependent thalassemia and sickle cell disease patients. Blood. 2005;106(4):1460–5.CrossRefPubMedPubMedCentral Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion- dependent thalassemia and sickle cell disease patients. Blood. 2005;106(4):1460–5.CrossRefPubMedPubMedCentral
10.
go back to reference Meloni A, Rienhoff Jr HY, Jones A, Pepe A, Lombardi M, Wood JC. The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages. Br J Haematol. 2013;161(6):888–91.CrossRefPubMedPubMedCentral Meloni A, Rienhoff Jr HY, Jones A, Pepe A, Lombardi M, Wood JC. The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages. Br J Haematol. 2013;161(6):888–91.CrossRefPubMedPubMedCentral
11.
go back to reference Carpenter JP, Pennell DJ. Role of T2* magnetic resonance in monitoring iron chelation therapy. Acta Haematol. 2009;122(2–3):146–54.CrossRefPubMed Carpenter JP, Pennell DJ. Role of T2* magnetic resonance in monitoring iron chelation therapy. Acta Haematol. 2009;122(2–3):146–54.CrossRefPubMed
12.
go back to reference Cohen AR. New advances in iron chelation therapy. Hematology Am Soc Hematol Educ Program. 2006:42–7. Cohen AR. New advances in iron chelation therapy. Hematology Am Soc Hematol Educ Program. 2006:42–7.
13.
go back to reference Kontoghiorghes GJ. A new era in iron chelation therapy: the design of optimal, individually adjusted iron chelation therapies for the complete removal of iron overload in thalassemia and other chronically transfused patients. Hemoglobin. 2009;33(5):332–8.CrossRefPubMed Kontoghiorghes GJ. A new era in iron chelation therapy: the design of optimal, individually adjusted iron chelation therapies for the complete removal of iron overload in thalassemia and other chronically transfused patients. Hemoglobin. 2009;33(5):332–8.CrossRefPubMed
14.
15.
go back to reference Saiviroonporn P, Viprakasit V, Sanpakit K, Wood JC, Krittayaphong R. Intersite validations of the pixel-wise method for liver R2* analysis in transfusion-dependent thalassemia patients: a more accessible and affordable diagnostic technology. Hematol Oncol Stem Cell Ther. 2012;5(2):91–5.CrossRefPubMed Saiviroonporn P, Viprakasit V, Sanpakit K, Wood JC, Krittayaphong R. Intersite validations of the pixel-wise method for liver R2* analysis in transfusion-dependent thalassemia patients: a more accessible and affordable diagnostic technology. Hematol Oncol Stem Cell Ther. 2012;5(2):91–5.CrossRefPubMed
16.
go back to reference Saiviroonporn P, Viprakasit V, Maneesai A, Siritanaratkul N, Pongtanakul B, Wood JC, et al. Inter-site validations of the Pixel-Wise method for cardiac T2* analysis in transfusion-dependent Thai thalassemia patients. J Med Assoc Thai. 2012;95 Suppl 2:S165–72.PubMed Saiviroonporn P, Viprakasit V, Maneesai A, Siritanaratkul N, Pongtanakul B, Wood JC, et al. Inter-site validations of the Pixel-Wise method for cardiac T2* analysis in transfusion-dependent Thai thalassemia patients. J Med Assoc Thai. 2012;95 Suppl 2:S165–72.PubMed
17.
go back to reference Positano V, Salani B, Pepe A, Santarelli MF, De Marchi D, Ramazzotti A, et al. Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging. 2009;27(2):188–97.CrossRefPubMed Positano V, Salani B, Pepe A, Santarelli MF, De Marchi D, Ramazzotti A, et al. Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging. 2009;27(2):188–97.CrossRefPubMed
18.
go back to reference Ghugre NR, Enriquez CM, Coates TD, Nelson Jr MD, Wood JC. Improved R2* measurements in myocardial iron overload. J Magn Reson Imaging. 2006;23(1):9–16.CrossRefPubMedPubMedCentral Ghugre NR, Enriquez CM, Coates TD, Nelson Jr MD, Wood JC. Improved R2* measurements in myocardial iron overload. J Magn Reson Imaging. 2006;23(1):9–16.CrossRefPubMedPubMedCentral
19.
go back to reference Deng J, Rigsby CK, Schoeneman S, Boylan E. A semiautomatic postprocessing of liver R2* measurement for assessment of liver iron overload. Magn Reson Imaging. 2012;30(6):799–806.CrossRefPubMed Deng J, Rigsby CK, Schoeneman S, Boylan E. A semiautomatic postprocessing of liver R2* measurement for assessment of liver iron overload. Magn Reson Imaging. 2012;30(6):799–806.CrossRefPubMed
20.
go back to reference McCarville MB, Hillenbrand CM, Loeffler RB, Smeltzer MP, Song R, Li CS, et al. Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload. Pediatr Radiol. 2010;40(8):1360–7.CrossRefPubMedPubMedCentral McCarville MB, Hillenbrand CM, Loeffler RB, Smeltzer MP, Song R, Li CS, et al. Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload. Pediatr Radiol. 2010;40(8):1360–7.CrossRefPubMedPubMedCentral
21.
go back to reference Palmieri F, di Salvo G, Perrotta S, Ragozzino A. Re: Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging. 2010;28(2):301–3.CrossRefPubMed Palmieri F, di Salvo G, Perrotta S, Ragozzino A. Re: Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging. 2010;28(2):301–3.CrossRefPubMed
22.
go back to reference Positano V, Salani B, Scattini B, Santarelli MF, Ramazzotti A, Pepe A, et al. A robust method for assessment of iron overload in liver by magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2895–8.PubMed Positano V, Salani B, Scattini B, Santarelli MF, Ramazzotti A, Pepe A, et al. A robust method for assessment of iron overload in liver by magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2895–8.PubMed
23.
go back to reference Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Med Phys. 1993;20(4):1033–48.CrossRefPubMed Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Med Phys. 1993;20(4):1033–48.CrossRefPubMed
24.
go back to reference Eggert LD, Sommer J, Jansen A, Kircher T, Konrad C. Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One. 2012;7(9):e45081.CrossRefPubMedPubMedCentral Eggert LD, Sommer J, Jansen A, Kircher T, Konrad C. Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One. 2012;7(9):e45081.CrossRefPubMedPubMedCentral
25.
go back to reference Hsieh TM, Liu YM, Liao CC, Xiao F, Chiang IJ, Wong JM. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak. 2011;11:54.CrossRefPubMedPubMedCentral Hsieh TM, Liu YM, Liao CC, Xiao F, Chiang IJ, Wong JM. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak. 2011;11:54.CrossRefPubMedPubMedCentral
26.
go back to reference Wang Z, Song Q, Soh YC, Sim K. An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation. Comput Vis Image Understanding. 2013;117:1412–20.CrossRef Wang Z, Song Q, Soh YC, Sim K. An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation. Comput Vis Image Understanding. 2013;117:1412–20.CrossRef
27.
go back to reference Pham DL, Prince JL. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imag. 1999;18(9):737–52.CrossRef Pham DL, Prince JL. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imag. 1999;18(9):737–52.CrossRef
28.
go back to reference Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. A modified Fuzzy C- Mean algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imag. 2002;21(3):993–9.CrossRef Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. A modified Fuzzy C- Mean algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imag. 2002;21(3):993–9.CrossRef
29.
go back to reference Liew AW, Yan H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans Med Imag. 2003;22(9):1063–75.CrossRef Liew AW, Yan H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans Med Imag. 2003;22(9):1063–75.CrossRef
30.
go back to reference Taher AT, Musallam KM, Inati A. Iron overload: consequences, assessment, and monitoring. Hemoglobin. 2009;33 Suppl 1:S46–57.CrossRefPubMed Taher AT, Musallam KM, Inati A. Iron overload: consequences, assessment, and monitoring. Hemoglobin. 2009;33 Suppl 1:S46–57.CrossRefPubMed
31.
go back to reference Brewer CJ, Coates TD, Wood JC. Spleen R2 and R2* in iron-overloaded patients with sickle cell disease and thalassemia major. J Magn Reson Imaging. 2009;29(2):357–64.CrossRefPubMedPubMedCentral Brewer CJ, Coates TD, Wood JC. Spleen R2 and R2* in iron-overloaded patients with sickle cell disease and thalassemia major. J Magn Reson Imaging. 2009;29(2):357–64.CrossRefPubMedPubMedCentral
Metadata
Title
Improved R2* liver iron concentration assessment using a novel fuzzy c-mean clustering scheme
Authors
Pairash Saiviroonporn
Vip Viprakasit
Rungroj Krittayaphong
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0097-5

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue